• 제목/요약/키워드: Online learning profile

검색결과 12건 처리시간 0.019초

온라인 호텔 리뷰와 평점 불일치 문제 해결을 위한 딥러닝 기반 개인화 추천 서비스 연구 (A Study of Deep Learning-based Personalized Recommendation Service for Solving Online Hotel Review and Rating Mismatch Problem)

  • 이청용;최사박;신병규;김재경
    • 경영정보학연구
    • /
    • 제23권3호
    • /
    • pp.51-75
    • /
    • 2021
  • 세계적인 전자상거래 기업들은 지속 가능한 경쟁력을 확보하기 위해 사용자 맞춤형 추천 서비스를 제공하고 있다. 기존 관련 연구에서는 주로 평점, 구매 여부 등 정량적 선호도 정보를 사용하여 개인화 추천 서비스를 제공하였다. 하지만 이와 같은 정량적 선호도 정보를 사용하여 개인화 추천 서비스를 제공하면 추천 성능이 저하될 수 있다는 문제점이 제기되고 있다. 호텔을 이용한 사용자가 호텔 서비스, 청결 상태 등에 대하여 만족하지 못한다고 리뷰를 작성하였으나 선호도 평점 5점을 부여했을 때 정량적 선호도(평점)와 정성적 선호도(리뷰)가 불일치한 문제가 발생할 수 있다. 따라서 본 연구에서는 정량적 선호도 정보와 정성적 선호도 정보가 일치하는지를 확인하고 이를 바탕으로 선호도 정보가 일치하는 사용자를 바탕으로 새로운 프로파일을 구축하여 개인화 추천 서비스를 제공하고자 한다. 리뷰에서 정성적 선호도를 추출하기 위해 자연어 처리 관련 연구에서 널리 사용되고 있는 CNN, LSTM, CNN + LSTM 등 딥러닝 기법을 사용하여 감성분석 모델을 구축하였다. 이를 통해 사용자가 작성한 리뷰에서 정성적 선호도 정보를 정교하게 추출하여 정량적 선호도 정보와 비교하였다. 본 연구에서 제안한 추천 방법론의 성능을 평가하기 위해 세계 최대 여행 플랫폼 TripAdvisor에서 실제 호텔을 이용한 사용자 선호도 정보를 수집하여 사용하였다. 실험 결과 본 연구에서 제안한 추천 방법론이 기존의 정량적 선호도만을 고려하는 추천 방법론보다 우수한 추천 성능을 나타냄을 확인할 수 있었다.

다중모형조합기법을 이용한 상품추천시스템 (Product Recommender Systems using Multi-Model Ensemble Techniques)

  • 이연정;김경재
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.39-54
    • /
    • 2013
  • 전자상거래의 폭발적 증가는 소비자에게 더 유리한 많은 구매 선택의 기회를 제공한다. 이러한 상황에서 자신의 구매의사결정에 대한 확신이 부족한 소비자들은 의사결정 절차를 간소화하고 효과적인 의사결정을 위해 추천을 받아들인다. 온라인 상점의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 그러나 사용자의 기호를 제대로 반영하지 못하는 추천시스템은 사용자의 실망과 시간낭비를 발생시킨다. 본 연구에서는 정확한 사용자의 기호 반영을 통한 추천기법의 정교화를 위해 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 본 연구에서 제안하는 모형은 크게 두 개의 단계로 이루어져 있으며, 첫 번째 단계에서는 상품군 별 우량고객 선정 규칙을 도출하기 위해서 로지스틱 회귀분석 모형, 의사결정나무 모형, 인공신경망 모형을 구축한 후 다중모형조합기법인 Bagging과 Bumping의 개념을 이용하여 세 가지 모형의 결과를 조합한다. 두 번째 단계에서는 상품군 별 연관관계에 관한 규칙을 추출하기 위하여 장바구니분석을 활용한다. 상기의 두 단계를 통하여 상품군 별로 구매가능성이 높은 우량고객을 선정하여 그 고객에게 관심을 가질만한 같은 상품군 또는 다른 상품군 내의 다른 상품을 추천하게 된다. 제안하는 상품추천시스템은 실제 운영 중인 온라인 상점인 'I아트샵'의 데이터를 이용하여 프로토타입을 구축하였고 실제 소비자에 대한 적용가능성을 확인하였다. 제안하는 모형의 유용성을 검증하기 위하여 제안 상품추천시스템의 추천과 임의 추천을 통한 추천의 결과를 사용자에게 제시하고 제안된 추천에 대한 만족도를 조사한 후 대응표본 T검정을 수행하였으며, 그 결과 사용자의 만족도를 유의하게 향상시키는 것으로 나타났다.