• Title/Summary/Keyword: Online Shopping Mall Characteristics

Search Result 67, Processing Time 0.021 seconds

Effects of Consumer Trust and Perceived Usefulness on Mobile Payments and Online Shopping Website Loyalty (간편결제 서비스에 대한 지각된 유용성 및 신뢰가 결제 및 쇼핑몰 충성도에 미치는 영향)

  • Han, Jin-Hee;Jae, So-Hyun;Kim, Bo-Hyun;Park, Jee-Sun
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.75-87
    • /
    • 2015
  • The current study examines whether consumers' perceived usefulness of and trust in the integrated mobile payments services positively influence consumer loyalty to the payments system as well as to the online shopping websites where they have used the payments system. Moreover, the study investigates the effects of individual characteristics and brand awareness of the provider of mobile payments on perceived usefulness and trust. Online survey was administered to consumers ranging in age from 20s to 40s. Data analysis reveals that as consumers' perceived usefulness of and trust in the mobile payments system positively influence consumer loyalty to mobile payments and shopping mall websites. The results of the study suggests that e-commerce's user interface design, particularly the transaction system, should receive greater attention as a basic web element of e-commerce building rather than a set of plug-ins or so.

A Behavioral Study of Cyworld Mini Homepage Users' Fashion Consciousness and Their Online Clothing Purchase Patterns in Relation to the Level of Self-disclosure (싸이월드 미니홈피 사용자의 자기노출 정도에 따른 패션 의식 및 온라인 의복 구매행동 연구)

  • Kim, Yeon-Ji;Kim, Chil-Soon
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.5
    • /
    • pp.991-1002
    • /
    • 2010
  • Nowadays, personal media is a new tool for communication as digital cameras and mobile phones are developing rapidly. We are concerned over Cyworld users who could have different personal characteristics which will influence on buying patterns in on line shopping behaviors. The purpose of this research was to observe fashion attitudes and purchase behavior of Cyworld mini homepage users, for establishing marketing strategies by understanding consumers. For this study, one line survey was used for 500 male and female subjects who are 20 to 40 years old. Only reliable 441 questionnaires were used for analysis. The SPSS program was used for frequency, K-means cluster, t test, and chi-square test. A total of 441 respondents were clustered on the basis of 8 item self-disclosure scale, using the K-means procedures. The results indicated that respondents were clustered into two segments; 267 respondents(active attitude towards self-disclosure) and 164 ones(not active). We examined fashion attitudes in mini home page and buying behavior by self-disclosed variable. Those who are involved actively in self expression and self-disclosure considered more fashion style and trend. The major motivates of web surfing was finding a good design, and good price. High self-disclosure group tends to search many shopping mall for right design and low self disclosure group tends to search them for the right price. High self-disclosure group tend to shop the fashion products more, while low self disclosure group tend to purchase books more through the internet. We realized that active group in self-disclosure purchased their clothing accidently when they visit Cyworld.

Formulating Strategies from Consumer Opinion Analysis on AI Kids Phone using Text Mining (AI 키즈폰의 소비자리뷰 분석을 통한 제품개선 전략에 대한 연구)

  • Kim, Dohun;Cha, Kyungjin
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.2
    • /
    • pp.71-89
    • /
    • 2019
  • In order to come up with satisfying product and improvement, firms use traditional marketing research methods to obtain consumers' opinions and further try to reflect them. Recently, gathering data from consumer communication platforms like internet and SNS has become popular methods. Meanwhile, with the development of information technology, mobile companies are launching new digital products for children to protect them from harmful content and provide them with necessary functions and information. Among these digital products, Kids Phone, which is a wearable device with safe functions that enable parents to learn childern's location. Kids phone is relatively cheaper and simpler than smartphone but it is noted that there are several problems such as some useless functions and frequent breakdowns. This study analyzes the reviews of Kids phones from domestic mobile companies, identifies the characteristics, strengths and weaknesses of the products, proposes improvement methods strategies for devices and services through SNS consumer analysis. In order to do that customer review data from online shopping malls was gathered and was further analyzed through text mining methods such as TF/IDF, Sentiment Analysis, and network analysis. Customer review data was gathered through crawling Online shopping Mall and Naver Blog/$Caf\acute{e}$. Data analysis and visualization was done using 'R', 'Textom', and 'Python'. Such analysis allowed us to figure out main issues and recent trends regarding kids phones and to suggest possible service improvement strategies based on sentiment analysis.

A Study on the Relationship Between Online Community Characteristics and Loyalty : Focused on Mediating Roles of Self-Congruency, Consumer Experience, and Consumer to Consumer Interactivity (온라인 커뮤니티 특성과 충성도 간의 관계에 대한 연구: 자아일치성, 소비자 체험, 상호작용성의 매개적 역할을 중심으로)

  • Kim, Moon-Tae;Ock, Jung-Won
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.157-194
    • /
    • 2008
  • The popularity of communities on the internet has captured the attention of marketing scholars and practitioners. By adapting to the culture of the internet, however, and providing consumer with the ability to interact with one another in addition to the company, businesses can build new and deeper relationships with customers. The economic potential of online communities has been discussed with much hope in the many popular papers. In contrast to this enthusiastic prognostications, empirical and practical evidence regarding the economic potential of the online community has shown a little different conclusion. To date, even communities with high levels of membership and vibrant social arenas have failed to build financial viability. In this perspective, this study investigates the role of various kinds of influencing factors to online community loyalty and basically suggests the framework that explains the process of building purchase loyalty. Even though the importance of building loyalty in an online environment has been emphasized from the marketing theorists and practitioners, there is no sufficient research conclusion about what is the process of building purchase loyalty and the most powerful factors that influence to it. In this study, the process of building purchase loyalty is divided into three levels; characteristics of community site such as content superiority, site vividness, navigation easiness, and customerization, the mediating variables such as self congruency, consumer experience, and consumer to consumer interactivity, and finally various factors about online community loyalty such as visit loyalty, affect, trust, and purchase loyalty are those things. And the findings of this research are as follows. First, consumer-to-consumer interactivity is an important factor to online community purchase loyalty and other loyalty factors. This means, in order to interact with other people more actively, many participants in online community have the willingness to buy some kinds of products such as music, content, avatar, and etc. From this perspective, marketers of online community have to create some online environments in order that consumers can easily interact with other consumers and make some site environments in order that consumer can feel experience in this site is interesting and self congruency is higher than at other community sites. It has been argued that giving consumers a good experience is vital in cyber space, and websites create an active (rather than passive) customer by their nature. Some researchers have tried to pin down the positive experience, with limited success and less empirical support. Web sites can provide a cognitively stimulating experience for the user. We define the online community experience as playfulness based on the past studies. Playfulness is created by the excitement generated through a website's content and measured using three descriptors Marketers can promote using and visiting online communities, which deliver a superior web experience, to influence their customers' attitudes and actions, encouraging high involvement with those communities. Specially, we suggest that transcendent customer experiences(TCEs) which have aspects of flow and/or peak experience, can generate lasting shifts in beliefs and attitudes including subjective self-transformation and facilitate strong consumer's ties to a online community. And we find that website success is closely related to positive website experiences: consumers will spend more time on the site, interacting with other users. As we can see figure 2, visit loyalty and consumer affect toward the online community site didn't directly influence to purchase loyalty. This implies that there may be a little different situations here in online community site compared to online shopping mall studies that shows close relations between revisit intention and purchase intention. There are so many alternative sites on web, consumers do not want to spend money to buy content and etc. In this sense, marketers of community websites must know consumers' affect toward online community site is not a last goal and important factor to influnece consumers' purchase. Third, building good content environment can be a really important marketing tool to create a competitive advantage in cyberspace. For example, Cyworld, Korea's number one community site shows distinctive superiority in the consumer evaluations of content characteristics such as content superiority, site vividness, and customerization. Particularly, comsumer evaluation about customerization was remarkably higher than the other sites. In this point, we can conclude that providing comsumers with good, unique and highly customized content will be urgent and important task directly and indirectly impacting to self congruency, consumer experience, c-to-c interactivity, and various loyalty factors of online community. By creating enjoyable, useful, and unique online community environments, online community portals such as Daum, Naver, and Cyworld are able to build customer loyalty to a degree that many of today's online marketer can only dream of these loyalty, in turn, generates strong economic returns. Another way to build good online community site is to provide consumers with an interactive, fun, experience-oriented or experiential Web site. Elements that can make a dot.com's Web site experiential include graphics, 3-D images, animation, video and audio capabilities. In addition, chat rooms and real-time customer service applications (which link site visitors directly to other visitors, or with company support personnel, respectively) are also being used to make web sites more interactive. Researchers note that online communities are increasingly incorporating such applications in their Web sites, in order to make consumers' online shopping experience more similar to that of an offline store. That is, if consumers are able to experience sensory stimulation (e.g. via 3-D images and audio sound), interact with other consumers (e.g., via chat rooms), and interact with sales or support people (e.g. via a real-time chat interface or e-mail), then they are likely to have a more positive dot.com experience, and develop a more positive image toward the online company itself). Analysts caution, however, that, while high quality graphics, animation and the like may create a fun experience for consumers, when heavily used, they can slow site navigation, resulting in frustrated consumers, who may never return to a site. Consequently, some analysts suggest that, at least with current technology, the rule-of-thumb is that less is more. That is, while graphics etc. can draw consumers to a site, they should be kept to a minimum, so as not to impact negatively on consumers' overall site experience.

  • PDF

Product Feature Extraction and Rating Distribution Using User Reviews (사용자 리뷰를 이용한 상품 특징 추출 및 평점 분배)

  • Son, Soobin;Chun, Jonghoon
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.1
    • /
    • pp.65-87
    • /
    • 2017
  • We propose a method to analyze the user reviews and ratings of the products in the online shopping mall and automatically extracts the features of the products to determine the characteristics of a product. By judging whether a rating is given by a specific feature of a product, our method distributes the score to each feature. Conventional methods force users to wastes time reading overflowing number of reviews and ratings to decide whether to buy the product or not. Moreover, it is difficult to grasp the merits and demerits of the product, because of the way reviews and ratings are provided. It is structured in a way that it is impossible to decide which rating is given to the which characteristics of the product. Therefore, in this paper, to resolve this problem, we propose a method to automatically extract the feature of the product from the user review and distribute the score to appropriate characteristics of the product by calculating the rating of each feature from the overall rating. proposed method collects product reviews and ratings, conducts morphological analysis, and extracts features and emotional words of the products. In addition, a method for determining the polarity of a sentence in which the feature appears is given a weight value for each feature. results of the experiment and the questionnaires comparing the existing methods show the usefulness of the proposed method. We also validates the results by comparing the analysis conducted by the product review experts.

Mediating Roles of Attachment for Information Sharing in Social Media: Social Capital Theory Perspective (소셜 미디어에서 정보공유를 위한 애착의 매개역할: 사회적 자본이론 관점)

  • Chung, Namho;Han, Hee Jeong;Koo, Chulmo
    • Asia pacific journal of information systems
    • /
    • v.22 no.4
    • /
    • pp.101-123
    • /
    • 2012
  • Currently, Social Media, it has widely a renown keyword and its related social trends and businesses have been fastly applied into various contexts. Social media has become an important research area for scholars interested in online technologies and cyber space and their social impacts. Social media is not only including web-based services but also mobile-based application services that allow people to share various style information and knowledge through online connection. Social media users have tendency to common identity- and bond-attachment through interactions such as 'thumbs up', 'reply note', 'forwarding', which may have driven from various factors and may result in delivering information, sharing knowledge, and specific experiences et al. Even further, almost of all social media sites provide and connect unknown strangers depending on shared interests, political views, or enjoyable activities, and other stuffs incorporating the creation of contents, which provides benefits to users. As fast developing digital devices including smartphone, tablet PC, internet based blogging, and photo and video clips, scholars desperately have began to study regarding diverse issues connecting human beings' motivations and the behavioral results which may be articulated by the format of antecedents as well as consequences related to contents that people create via social media. Social media such as Facebook, Twitter, or Cyworld users are more and more getting close each other and build up their relationships by a different style. In this sense, people use social media as tools for maintain pre-existing network, creating new people socially, and at the same time, explicitly find some business opportunities using personal and unlimited public networks. In terms of theory in explaining this phenomenon, social capital is a concept that describes the benefits one receives from one's relationship with others. Thereby, social media use is closely related to the form and connected of people, which is a bridge that can be able to achieve informational benefits of a heterogeneous network of people and common identity- and bonding-attachment which emphasizes emotional benefits from community members or friend group. Social capital would be resources accumulated through the relationships among people, which can be considered as an investment in social relations with expected returns and may achieve benefits from the greater access to and use of resources embedded in social networks. Social media using for their social capital has vastly been adopted in a cyber world, however, there has been little explaining the phenomenon theoretically how people may take advantages or opportunities through interaction among people, why people may interactively give willingness to help or their answers. The individual consciously express themselves in an online space, so called, common identity- or bonding-attachments. Common-identity attachment is the focus of the weak ties, which are loose connections between individuals who may provide useful information or new perspectives for one another but typically not emotional support, whereas common-bonding attachment is explained that between individuals in tightly-knit, emotionally close relationship such as family and close friends. The common identify- and bonding-attachment are mainly studying on-offline setting, which individual convey an impression to others that are expressed to own interest to others. Thus, individuals expect to meet other people and are trying to behave self-presentation engaging in opposite partners accordingly. As developing social media, individuals are motivated to disclose self-disclosures of open and honest using diverse cues such as verbal and nonverbal and pictorial and video files to their friends as well as passing strangers. Social media context, common identity- and bond-attachment for self-presentation seems different compared with face-to-face context. In the realm of social media, social users look for self-impression by posting text messages, pictures, video files. Under the digital environments, people interact to work, shop, learn, entertain, and be played. Social media provides increasingly the kinds of intention and behavior in online. Typically, identity and bond social capital through self-presentation is the intentional and tangible component of identity. At social media, people try to engage in others via a desired impression, which can maintain through performing coherent and complementary communications including displaying signs, symbols, brands made of digital stuffs(information, interest, pictures, etc,). In marketing area, consumers traditionally show common-identity as they select clothes, hairstyles, automobiles, logos, and so on, to impress others in any given context in a shopping mall or opera. To examine these social capital and attachment, we combined a social capital theory with an attachment theory into our research model. Our research model focuses on the common identity- and bond-attachment how they are formulated through social capitals: cognitive capital, structural capital, relational capital, and individual characteristics. Thus, we examined that individual online kindness, self-rated expertise, and social relation influence to build common identity- and bond-attachment, and the attachment effects make an impact on both the willingness to help, however, common bond seems not to show directly impact on information sharing. As a result, we discover that the social capital and attachment theories are mainly applicable to the context of social media and usage in the individual networks. We collected sample data of 256 who are using social media such as Facebook, Twitter, and Cyworld and analyzed the suggested hypotheses through the Structural Equation Model by AMOS. This study analyzes the direct and indirect relationship between the social network service usage and outcomes. Antecedents of kindness, confidence of knowledge, social relations are significantly affected to the mediators common identity-and bond attachments, however, interestingly, network externality does not impact, which we assumed that a size of network was a negative because group members would not significantly contribute if the members do not intend to actively interact with each other. The mediating variables had a positive effect on toward willingness to help. Further, common identity attachment has stronger significant on shared information.

  • PDF

A Study on the Effect of Network Centralities on Recommendation Performance (네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.23-46
    • /
    • 2021
  • Collaborative filtering, which is often used in personalization recommendations, is recognized as a very useful technique to find similar customers and recommend products to them based on their purchase history. However, the traditional collaborative filtering technique has raised the question of having difficulty calculating the similarity for new customers or products due to the method of calculating similaritiesbased on direct connections and common features among customers. For this reason, a hybrid technique was designed to use content-based filtering techniques together. On the one hand, efforts have been made to solve these problems by applying the structural characteristics of social networks. This applies a method of indirectly calculating similarities through their similar customers placed between them. This means creating a customer's network based on purchasing data and calculating the similarity between the two based on the features of the network that indirectly connects the two customers within this network. Such similarity can be used as a measure to predict whether the target customer accepts recommendations. The centrality metrics of networks can be utilized for the calculation of these similarities. Different centrality metrics have important implications in that they may have different effects on recommended performance. In this study, furthermore, the effect of these centrality metrics on the performance of recommendation may vary depending on recommender algorithms. In addition, recommendation techniques using network analysis can be expected to contribute to increasing recommendation performance even if they apply not only to new customers or products but also to entire customers or products. By considering a customer's purchase of an item as a link generated between the customer and the item on the network, the prediction of user acceptance of recommendation is solved as a prediction of whether a new link will be created between them. As the classification models fit the purpose of solving the binary problem of whether the link is engaged or not, decision tree, k-nearest neighbors (KNN), logistic regression, artificial neural network, and support vector machine (SVM) are selected in the research. The data for performance evaluation used order data collected from an online shopping mall over four years and two months. Among them, the previous three years and eight months constitute social networks composed of and the experiment was conducted by organizing the data collected into the social network. The next four months' records were used to train and evaluate recommender models. Experiments with the centrality metrics applied to each model show that the recommendation acceptance rates of the centrality metrics are different for each algorithm at a meaningful level. In this work, we analyzed only four commonly used centrality metrics: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. Eigenvector centrality records the lowest performance in all models except support vector machines. Closeness centrality and betweenness centrality show similar performance across all models. Degree centrality ranking moderate across overall models while betweenness centrality always ranking higher than degree centrality. Finally, closeness centrality is characterized by distinct differences in performance according to the model. It ranks first in logistic regression, artificial neural network, and decision tree withnumerically high performance. However, it only records very low rankings in support vector machine and K-neighborhood with low-performance levels. As the experiment results reveal, in a classification model, network centrality metrics over a subnetwork that connects the two nodes can effectively predict the connectivity between two nodes in a social network. Furthermore, each metric has a different performance depending on the classification model type. This result implies that choosing appropriate metrics for each algorithm can lead to achieving higher recommendation performance. In general, betweenness centrality can guarantee a high level of performance in any model. It would be possible to consider the introduction of proximity centrality to obtain higher performance for certain models.