Although there have been studies regarding the influence of customer reviews on consumer decision making at online shopping sites, research on factors affecting the perceived customer review quality for online shopping sites is limited. This study posits that sociability, which is one of the environmental factors of an online shopping site, can affect the quality of customer reviews. Sociability is a key factor in building a collaborative environment online, but studies have been limited to applying sociability to customer reviews that are the result of a collaborative environment. This study expects that sociability affects the performance of online shopping sites through the perceived information quality of customer reviews, and customers' efficacy. More specifically this study investigates the structural relationship between sociability, self-efficacy, collective efficacy, and the perceived information quality of the reviews in an online shopping context, regarding the patronage intention of customers. This study was conducted using a survey of 361 college students. The structural equation model results indicate that user perception of sociability increases self-efficacy and collective efficacy. The improved efficacy enhances the perceived information quality of reviews for online shopping sites, which increases patronage intention of customers. This study found that online shopping sites require a platform for customers to engage in social interaction to enhance their customers' loyalty and lifetime value.
Online customer reviews (i.e., electronic word-of-mouth) has gained considerable interest over the past years. However, a knowledge gap exists in explaining the mechanisms among the factors that determine the product sales in online retailing environment. To fill the gap, this study adopts a principal-agent perspective to investigate the effect of customer reviews and customer incentives on product sales in online retail stores. Two customer review factors (i.e., average review ratings and the number of reviews) and two customer incentive factors (i.e., price discounts and special shipping offers) are used to predict product sales in regression analysis. The sales ranking data collected from the video game titles at Amazon.com are used to analyze the direct effects of the four factors and the interaction effects between customer review and customer incentive factors to product sales. Result reveals that most relationships exist as hypothesized. The findings support both the direct and interaction effects of customer reviews and incentive factors on product sales. Based on the findings, discussions are provided with regard to the academic and practical contributions.
Online consumer activities have increased considerably since the COVID-19 outbreak. For the products and services which have an impact on everyday life, online reviews and recommendations can play a significant role in consumer decision-making processes. Thus, to better serve their customers, online firms are required to build online-centric marketing strategies. Especially, it is essential to define core value of customers based on the online customer reviews and to propose these values to their customers. This study discovers specific perceived values of customers in regard to a certain product and service, using online customer reviews and proposes a customer value proposition methodology which enables online firms to develop more effective marketing strategies. In order to discover customers value, the methodology employs a text-mining technology, which combines a sentiment analysis and topic modeling. By the methodology, customer emotions and value factors can be more clearly defined. It is expected that online firms can better identify value elements of their respective customers, provide appropriate value propositions, and thus gain sustainable competitive advantage.
온라인 스토어들은 다양한 방식으로 사용자들에게 신뢰감을 가져다 줄 수 있는 요인들을 제공하려고 한다. 대표적인 방식이 고객이 좋아할 만한 제품의 추천과 고객제품리뷰의 제공이다. 각각의 제공을 통해 신뢰의 선행요인이 되는 사회적 실재감을 향상시킬 수 있다는 연구들이 있어왔다. 따라서 본 연구에서는 추천 상황에 따른 사회적 실재감에 미치는 영향과 추천 상황과 제품군의 유형, 고객제품리뷰의 제공여부에 따라 사회적 실재감의 증가에 미치는 영향을 실험을 통해 분석하였다. 개인화 추천을 통해 사회적 실재감을 증대시킬 수 있었으며, 쾌락재에서는 고객제품리뷰의 제공을 통해 어떤 추천 상황에서든 사회적 실재감이 증대되나 유의한 차이를 보이지는 않았다.
본 논문에서는 온라인 고객 리뷰를 활용하여 건강 보조제, 화장품 등 현재의 상태를 개선하기 위해 사용되는 제품을 대상으로 그 효과를 알아보기 위한 제품 효과 분석 기법을 제시하였다. 제안하는 제품 효과 분석 기법은 블로그 포스팅에 존재하는 광고를 자동 제거하고, 효과 분석을 위한 증상, 효과, 증가, 및 감소로 이루어진 단어 사전을 구축하며, 제안하는 알고리즘을 통해 제품의 효과를 측정한다. 제품 효과 분석 기법을 검증하기 위해 정답 레이블이 존재하는 네이버 쇼핑 리뷰 데이터셋을 대상으로 성능평가를 실시하였으며, 전통적인 긍부정 사전과 RNN 모델과 성능을 비교하였다. 실험 결과, 본 논문에서 제안하는 효과 분석 기법이 다른 두가지 방법보다 정확도가 뛰어남을 보여주었다. 또한, 아토피 피부염, 여드름 치료제에 제안하는 기법을 적용하여 소셜 미디어에 나타난 효과적인 치료법을 소개하였다. 본 논문에서 제시한 알고리즘은 블로그를 포함한 여러 매체의 리뷰로부터 제품의 효과를 점수화할 수 있으므로 다양한 제품군과 소셜 미디어에 적용될 수 있을 것으로 보인다.
This study examines how an initially perceived product value affects consumer's purchase intention after reading online reviews with various tones. The study proposes that associations among initially perceived overall product value, degree of confirmation resulting from reading the reviews, and final purchase intention differ across review tones such that 1) when the tone is favorable, the effect of an initially perceived product value is stronger than when the tone is critical, and 2) when the tone is extreme, the effect of confirmation is stronger than when the tone is moderate. The survey was conducted with 276 online shopping mall users in Korea, and most of the hypotheses were supported. This study asserts that the effects of online reviews should be considered together with customer's level of expectation formed prior to reading online reviews, which resulted from extensive search and screening processes that the customer went through before reading online reviews.
Customer reviews are one of the important sources for purchase decision makings in online stores. Online stores have tried to provide useful reviews in product pages to customers. To assess the usefulness of customer reviews before other users have voted enough on the reviews, diverse aspects of reviews were utilized in prevous studies. Style and semantic information were utilized in many studies. This study aims to test diverse alogrithms and datasets for identifying a proper classification method and threshold to classify useful reviews. In particular, most researches utilized ratio type helpfulness index as Amazon.com used. However, there is another type of usefulness index utilized in TripAdviser.com or Yelp.com, count type helpfulness index. There was no proper threshold to classify useful reviews yet for count type helpfulness index. This study used reivews and their usefulness votes on restaurnats from Yelp.com to devise diverse datasets and applied text mining approaches to classify useful reviews. Random Forest, SVM, and GLMNET showed the greater values of accuracy than other approaches.
Recently, online commerces are becoming more common due to factors such as mobile technology development and smart device dissemination, and online review has a big influence on potential buyer's purchase decision. This study presents a set of analytical methodologies for understanding the meaning of customer reviews of products in online transaction. Using techniques currently developed in deep learning are implemented Hierarchical Attention Network for analyze meaning in online reviews. By using these techniques, we could solve time consuming pre-data analysis time problem and multiple topic problems. To this end, this study analyzes customer reviews of laptops sold in domestic online shopping malls. Our result successfully demonstrates over 90% classification accuracy. Therefore, this study classified the unstructured text data in the semantic analysis and confirmed the practical application possibility of the review analysis process.
Purpose - The purpose of this study is to analyze the impact of customer's communication on sales performance in the online market. Research design, data, and methodology - This study uses linear regression analysis to examine the effects of product review characteristics which are the result of customer's communication, on sales performance by using product reviews of online marketplace Amazon. Result - The increase in the number of product reviews positively affected sales performance. An increase in extreme opinions in the product review has a positive effect on sales performance. The product review length has a negative effect on sales performance. Conclusions - This study has shown the online marketplace customers' communication can influence sales performance using product review big data. This study contributed to the theoretical completeness by analyzing all the products of the book category in Amazon online market. This research will complement the theories regard to the customer behavior affecting sales performance. We expect the empirical analysis result will provide empirical help to sellers, online marketplace operators, and customers. In particular, the number of letters in the product may negatively affect sales performance, so sellers need to consider this effect carefully when exposing product reviews.
본 논문에서는 텍스트마이닝 기술을 이용하여 온라인 고객리뷰를 분석하기 위한 방법론을 제안하였다. 온라인 고객리뷰를 보다 효율적이고 효과적으로 분석할 수 있도록 시장세분화의 개념을 도입하였다. 즉, 제안한 방법론은 텍스트마이닝 분야에서 시장세분화의 개념에 부응하는 기술들이라 할 수 있는 범주화와 정보추출 기법의 사용을 포함한다. 특히, 통계적으로 보다 견고한 분석결과를 도출할 수 있도록 전통적 통계분석기법중의 하나인 교차분석방법을 제안하는 방법론에 포함하였다. 제안한 방법론의 타당성을 확인하기 위하여 양질의 온라인 고객리뷰가 있는 웹사이트를 선정하여 실제로 온라인 고객리뷰들을 분석하여 보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.