• Title/Summary/Keyword: One-way hash functions

Search Result 17, Processing Time 0.025 seconds

Secure Routing Mechanism using one-time digital signature in Ad-hoc Networks (애드혹 네트워크에서의 one-time 전자 서명을 이용한 라우팅 보안 메커니즘)

  • Pyeon, Hye-Jin;Doh, In-Shil;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.623-632
    • /
    • 2005
  • In ad-hoc network, there is no fixed infrastructure such as base stations or mobile switching centers. The security of ad-hoc network is more vulnerable than traditional networks because of the basic characteristics of ad-hoc network, and current muting protocols for ad-hoc networks allow many different types of attacks by malicious nodes. Malicious nodes can disrupt the correct functioning of a routing protocol by modifying routing information, by fabricating false routing information and by impersonating other nodes. We propose a routing suity mechanism based on one-time digital signature. In our proposal, we use one-time digital signatures based on one-way hash functions in order to limit or prevent attacks of malicious nodes. For the purpose of generating and keeping a large number of public key sets, we derive multiple sets of the keys from hash chains by repeated hashing of the public key elements in the first set. After that, each node publishes its own public keys, broadcasts routing message including one-time digital signature during route discovery and route setup. This mechanism provides authentication and message integrity and prevents attacks from malicious nodes. Simulation results indicate that our mechanism increases the routing overhead in a highly mobile environment, but provides great security in the route discovery process and increases the network efficiency.

A Secure Digital Watermarking Scheme based on RSA Function (RSA 함수에 기반한 안전한 워터마킹 기법)

  • Lee, Jean-Ho;Kim, Tai-Yun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.3
    • /
    • pp.220-228
    • /
    • 2001
  • Digital watermarking is a technique for the purpose of protecting the ownership of the image by embedding invisible watermarks in a digital imnge. To guarantee the security of the digital watermarking scheme for copyright protection, it is required to satisfy some requirements robustness and perceptual invisibility which provided by the location of embedded bits, the public watermarking algorithm, and the hidden use of the key, which can protect unauthorized accesses from illegal users. For this, in this paper we propose a new copyright watermarking scheme, which is based on one-way hash functions using RSA functions and modular operations. RSA functions are widely used in cryptographic systems. Our watermarking scheme is robust against LSB(Jeast significant bit) attacks and gamma corresction attack, and is also perceptually invisible. We demonstrate the characteristics of our proposed watermarking scheme through experiments.

  • PDF

Mutual Authentication and Secure Session Termination Scheme in iATA Protocol

  • Ong, Ivy;Lee, Shirly;Lee, Hoon-Jae;Lim, Hyo-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.437-442
    • /
    • 2010
  • Ubiquitous mobile computing is becoming easier and more attractive in this ambient technological Internet world. However, some portable devices such as Personal Digital Assistant (PDAs) and smart phones are still encountering inherent constraints of limited storages and computing resources. To alleviate this problem, we develop a cost-effective protocol, iATA to transfer ATA commands and data over TCP/IP network between mobile appliances and stationary servers. It provides mobile users a virtual storage platform which is physically resided at remote home or office. As communications are made through insecure Internet connections, security risks of adopting this service become a concern. There are many reported cases in the history where attackers masquerade as legitimate users, illegally access to network-based applications or systems by breaking through the poor authentication gates. In this paper, we propose a mutual authentication and secure session termination scheme as the first and last defense steps to combat identity thief and fraud threat in particular for iATA services. Random validation factors, large prime numbers, current timestamps, one-way hash functions and one-time session key are deployed accordingly in the scheme. Moreover, we employ the concept of hard factorization problem (HFP) in the termination phase to against fraud termination requests. Theoretical security analysis discussed in later section indicates the scheme supports mutual authentication and is robust against several attacks such as verifiers' impersonation, replay attack, denial-of-services (DoS) attack and so on.

Data Origin Authentication Scheme for Wireless Mesh Networks (무선 메쉬 네트워크를 위한 데이터 송신 인증 기술)

  • Kang, Nam-Hi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.135-142
    • /
    • 2010
  • Wireless mesh network, which is an access network technology, adopts ubiquitous features of ad-hoc network that includes capabilities of self-configuration and self-management. This paper proposes a scheme which enables nodes along route in wireless mesh network to authenticate data and verify data integrity. The scheme distinguishes infra-node, which is a network device used to form mesh network, and user node in ad-hoc network, which operates functions as a sender, receiver or relayer, to deploy different authentication scheme. That is, hop-based authentication scheme along route forming wireless backbone differs from authentication scheme for user nodes in route over MANET. The proposed scheme is less complex than previously proposed schemes from the repects of security setup procedures and managements. In addition, the scheme is able to reduce transmission delay from a source to a destination owing to fast authentication over wireless backbone.

A Secure Data Processing Using ID-Based Key Cryptography in Mobile Cloud Computing (모바일 클라우드 컴퓨팅 환경에서 ID-기반 키 암호화를 이용한 안전한 데이터 처리 기술)

  • Cheon, EunHong;Lee, YonSik
    • Convergence Security Journal
    • /
    • v.15 no.5
    • /
    • pp.3-8
    • /
    • 2015
  • Most mobile cloud computing system use public key cryptography to provide data security and mutual authentication. A variant of traditional public key technologies called Identity-Based Cryptography(IBC) has recently received considerable attention. The certificate-free approach of IBC may well match the dynamic qualities of cloud environment. But, there is a need for a lightweight secure framework that provides security with minimum processing overhead on mobile devices. In this paper, we propose to use hierarchical ID-Based Encryption in mobile cloud computing. It is suitable for a mobile network since it can reduce the workload of root Public Key Generators by delegating the privilege of user authentication and private key generation. The Identity-Based Encryption and Identity-Based Signature are also proposed and an ID-Based Authentication scheme is presented to secure data processing. The proposed scheme is designed by one-way hash functions and XOR operations, thus has low computation costs for mobile users.

Electronic Cash Schemes for EFT Using Smart Card (스마트카드를 이용한 새로운 전자현금 방식)

  • Youm, Heung-Youl;Lee, Seok-Lae;Rhee Man-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.5 no.1
    • /
    • pp.37-50
    • /
    • 1995
  • The smart card with the cryptography and VLSI technologies makes it possible to implement the electronic cash easily. A number of electronic each schemes have been proposed by many cryptographic researchers. In this paper, we propose a practical electronic cash system, using blind digital signature scheme. Schnorr's authentication scheme based on the discrete logarithm problem, and the hierarchical cash tree based on two one-way hash functions for dividable payment. Thisf electronic cash scheme has such properties as privacy of the payment, off-line payment, non-reuseability of cash, transferability of cash to another customer, and dividable payment of cash. This electronic cash protocol is well suited for implementing in smart card.

A Shared Cache Directory based Wireless Internet Proxy Server Cluster (공유 캐시 디렉토리 기반의 무선 인터넷 프록시 서버 클러스터)

  • Kwak Hu-Keun;Chung Kyu-Sik
    • The KIPS Transactions:PartA
    • /
    • v.13A no.4 s.101
    • /
    • pp.343-350
    • /
    • 2006
  • In this paper, wireless internet proxy server clusters are used for the wireless internet because their caching, distillation, and clustering functions are helpful to overcome the limitations and needs of the wireless internet. A wireless Internet proxy server cluster needs a systematic scalability, simple communication structure, cooperative caching, and serving Hot Spot requests. In our former research, we proposed the CD-A structure which can be scalable in a systematic way and has a simple communication structure but it has no cooperative caching. A hash based load balancing can be used to solve the problem, but it can not deal with Hot Spot request problem. In this paper, we proposed a shared storage based wireless internet proxy server cluster which has a systematic scalability, simple communication structure, cooperative caching, and serving Hot Spot requests. The proposed method shares one cache directory and it has advantages: advantages of the existing CD-A structure, cooperative caching, and serving Hot Spot requests. We performed experiments using 16 PCs and experimental results show high performance improvement of the proposed system compared to the existing systems in Hot Spot requests.