• Title/Summary/Keyword: One-to-one Resonance

Search Result 1,422, Processing Time 0.027 seconds

Evaluation of the Neural Fiber Tractography Associated with Aging in the Normal Corpus Callosum Using the Diffusion Tensor Imaging (DTI) (확산텐서영상(Diffusion Tensor Imaging)을 이용한 정상 뇌량에서의 연령대별 신경섬유로의 변화)

  • Im, In-Chul;Goo, Eun-Hoe;Lee, Jae-Seung
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.4
    • /
    • pp.189-194
    • /
    • 2011
  • This study used magnetic resonance diffusion tensor imaging (DTI) to quantitatively analyze the neural fiber tractography according to the age of normal corpus callosum and to evaluate of usefulness. The research was intended for the applicants of 60 persons that was in a good state of health with not brain or other disease. The test parameters were TR: 6650 ms, TE: 66 ms, FA: $90^{\circ}$, NEX: 2, thickness: 2 mm, no gap, FOV: 220 mm, b-value: $800s/mm^2$, sense factor: 2, acquisition matrix size: $2{\times}2{\times}2mm^3$, and the test time was 3 minutes 46 seconds. The evaluation method was constructed the color-cored FA map include to the skull vertex from the skull base in scan range. We set up the five ROI of corpus callosum of genu, anterior-mid body, posterior-mid body, isthmus, and splenium, tracking, respectively, and to quantitatively measured the length of neural fiber. As a result, the length of neural fiber, for the corpus callosum of genu was 20's: $61.8{\pm}6.8$, 30's: $63.9{\pm}3.8$, 40's: $65.5{\pm}6.4$, 50's: $57.8{\pm}6.0$, 60's: $58.9{\pm}4.5$, more than 70's: $54.1{\pm}8.1mm$, for the anterior-mid body was 20's: $54.8{\pm}8.8$, 30's: $58.5{\pm}7.9$, 40's: $54.8{\pm}7.8$, 50's: $56.1{\pm}10.2$, 60's: $48.5{\pm}6.2$, more than 70's: $48.6{\pm}8.3mm$, for the posterior-mid body was 20's: $72.7{\pm}9.1$, 30's: $61.6{\pm}9.1$, 40's: $60.9{\pm}10.5$, 50's: $61.4{\pm}11.7$, 60's: $54.9{\pm}10.0$, more than 70's: $53.1{\pm}10.5mm$, for the isthmus was 20's: $71.5{\pm}17.4$, 30's: $74.1{\pm}14.9$, 40's: $73.6{\pm}14.2$, 50's: $66.3{\pm}12.9$, 60's: $56.5{\pm}11.2$, more than 70's: $56.8{\pm}11.3mm$, and for the splenium was 20's: $82.6{\pm}6.8$, 30's: $86.9{\pm}6.4$, 40's: $83.1{\pm}7.1$, 50's: $81.5{\pm}7.4$, 60's: $78.6{\pm}6.0$, more than 70's: $80.55{\pm}8.6mm$. The length of neural fiber for normal corpus callosum were statistically significant in the genu(P=0.001), posterior-mid body(P=0.009), and istumus(P=0.012) of corpus callosum. In order of age, the length of neural fiber increased from 30s to 40s, as one grows older tended to decrease. For this reason, the nerve cells of brain could be confirmed through the neural fiber tractography to progress actively in middle age.

Tc-99m ECD Brain SPECT in MELAS Syndrome and Mitochondrial Myopathy: Comparison with MR findings (MELAS 증후군과 미토콘드리아 근육병에서의 Tc-99m ECD 뇌단일 광전자방출 전산화단층촬영 소견: 자기공명영상과의 비교)

  • Park, Sang-Joon;Ryu, Young-Hoon;Jeon, Tae-Joo;Kim, Jai-Keun;Nam, Ji-Eun;Yoon, Pyeong-Ho;Yoon, Choon-Sik;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.6
    • /
    • pp.490-496
    • /
    • 1998
  • Purpose: We evaluated brain perfusion SPECT findings of MELAS syndrome and mitochondrial myopathy in correlation with MR imaging in search of specific imaging features. Materials and Methods: Subjects were five patients (four females and one male; age range, 1 to 25 year) who presented with repeated stroke-like episodes, seizures or developmental delay or asymptomatic but had elevated lactic acid in CSF and serum. Conventional non-contrast MR imaging and Tc-99m-ethyl cysteinate dimer (ECD) brain perfusion SPECT were Performed and imaging features were analyzed. Results: MRI demonstrated increased T2 signal intensities in the affected areas of gray and white matters mainly in the parietal (4/5) and occipital lobes (4/5) and in the basal ganglia (1/5), which were not restricted to a specific vascular territory. SPECT demonstrated decreased perfusion in the corresponding regions of MRI lesions. In addition, there were perfusion defects in parietal (1 patient), temporal (2), and frontal (1) lobes and basal ganglia (1) and thalami (2). In a patient with mitochondrial myopathy who had normal MRI, decreased perfusion was noted in left parietal area and bilateral thalami. Conclusion: Tc-99m ECD SPECT imaging in patients with MELAS syndrome and mitochondrial myopathy showed hypoperfusion of parieto-occipital cortex, basal ganglia, thalamus and temporal cortex, which were not restricted to a specific vascular territory. There were no specific imaging features on SPECT. The significance of abnormal perfusion on SPECT without corresponding MR abnormalities needs to be evaluated further in larger number of patients.

  • PDF