• Title/Summary/Keyword: One-dimensional Analysis

Search Result 2,649, Processing Time 0.034 seconds

3-D Kinematic comparison of One Hand Backhand Stroke and Two Hand Backhand Stroke in Tennis (테니스 한손 백핸드 스트로크와 양손 백핸드 스트로크 동작의 3차원 운동학적 비교 분석)

  • Choi, Ji-Young;Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.85-95
    • /
    • 2005
  • The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle during One Hand Backhand Stroke and Two Hand Backhand in tennis. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and racket head direction were defined. 1. In three dimensional maximum linear velocity of racket head the X axis and Y axis(horizontal direction) showed $-11.04{\pm}2.69m/sec$, $-9.31{\pm}0.49m/sec$ before impact, the z axis(vertical direction) maximum linear velocity of racket head did not show at impact but after impact this will resulted influence upon hitting ball. It could be suggest that Y axis velocity of racket head influence on ball direction and z axis velocity influence on ball spin after impact. The stance distance between right foot and left foot was mean $75.4{\pm}5.86cm$ during one hand backhand stroke and $72.6{\pm}4.67cm$ during two hand backhand stroke. 2. The three dimensional anatomical angular displacement of trunk in interna rotation-external rotation showed most important role in backhand stroke. and is follwed by flexion-extension. the three dimensional anatomical angular displacement of trunk did not show significant difference between one hand backhand stroke and two hand backhand stroke but the three dimensional anatomical angular displacement of trunk was bigger than one hand backhand stroke. 3. while backhand stroke, the flexion-extension and adduction-abduction of right shoulder joint showed significant different between one hand backhand stroke and two hand backhand stroke. the three dimensional anatomical angular displacement of right shoulder joint showed more flex and abduct in one hand backhand stroke. 4. The three dimensional anatomical angular displacement of left shoulder showed flexion, adduction, and external rotation at impact. after impact, The angular displacement as adduction-abduction of left shoulder changed motion direction as abduction. angular displacement of left shoulder as flexion-extension showed bigger than the right shoulder.

Electrophoretical Analysis of 36-Kilodalton Outer Membrane Protein of Vibrio vulnificus ATCC 27562

  • Moon-Soo Heo;Cho-Rok Jung
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.35-39
    • /
    • 1999
  • Elecrophoreticl analysis of a 36 kDa protein was runned by SDS-PAGE, isoelectric focusing (IEF) and two dimensional electrophoresis pattern. Major 36 kDa and 25, 46, 48, 66 kDa protein were detected by Coomassie blue stain on SDS-PAGE. Major 36kDa protein was eluted for production of antiserum for serological analysis, IEF and two dimensional electrophoresis. Isoelectric point of 36kDa was aout pH 8.5. Two dimensional electrophoresis of eluted 36kDa showed one point on the gel. Anti-36 kDa serum made by newzilland rabbit for serological test. In ELISA, final titer of antibody was 100×{TEX}$2^5}${/TEX} : 1. Neutralize ability of serum was examined by slide agglutination test and colonization test in rat. Anti-36 kDa serum agglutinated whole cell of V. vulnificus were inhibited colonization on intestine in rat. Accordingly In this paper contain some electrophoretical analysis and serological test of a 36 kDa OMP of V. vulnificus.

  • PDF

Principal Component Analysis Based Two-Dimensional (PCA-2D) Correlation Spectroscopy: PCA Denoising for 2D Correlation Spectroscopy

  • Jung, Young-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1345-1350
    • /
    • 2003
  • Principal component analysis based two-dimensional (PCA-2D) correlation analysis is applied to FTIR spectra of polystyrene/methyl ethyl ketone/toluene solution mixture during the solvent evaporation. Substantial amount of artificial noise were added to the experimental data to demonstrate the practical noise-suppressing benefit of PCA-2D technique. 2D correlation analysis of the reconstructed data matrix from PCA loading vectors and scores successfully extracted only the most important features of synchronicity and asynchronicity without interference from noise or insignificant minor components. 2D correlation spectra constructed with only one principal component yield strictly synchronous response with no discernible a asynchronous features, while those involving at least two or more principal components generated meaningful asynchronous 2D correlation spectra. Deliberate manipulation of the rank of the reconstructed data matrix, by choosing the appropriate number and type of PCs, yields potentially more refined 2D correlation spectra.

터보펌프 부분흡입형 터빈 공력설계

  • Lee, Eun-Seok;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.35-44
    • /
    • 2004
  • In this study, one dimensional aerodynamic and structural study of a partial admission turbo pump turbine was performed. A turbine consists of a nozzle, rotor, outlet guide vanes. The aerodynamic characteristics of each component was derived from the governing equation and validated from the CFD calculations. One-dimensional basic design such as velocity triangles was conducted from the mean line analysis and modified from the 2-D and 3-D CFD analysis. The blade profile was determined by the CFD optimization. The thermal stress analysis and structural analysis are needed to be studied in the next design stage.

  • PDF

A Study on the Supportive Stiffness in Transitional Zones through Moving Load-Based Three-Dimensional Modeling (이동하중과 3차원 모델링을 통한 접속부 지지강성연구)

  • Woo, Hyeun-Joon;Lee, Seung-Ju;Kang, Yun-Suk;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1542-1549
    • /
    • 2011
  • The Transitional zone between bridge abutment and earthwork is one of the representative vulnerable zones in railway where differential settlements may take place due to the different supportive stiffness. Although transitional zones are managed with stricter standards than those of the other earthwork zones either in the design and construction stages, it is very difficult to prevent differential settlement perfectly. A three-dimensional numerical analyses were performed by applying train moving load in this study. The analytical model including abutments and earthwork zones was constituted with rail, sleepers, track concrete layer (TCL), hydraulic stabilized base (HSB), reinforced road bed, and road bed using railway and road base structure. The clamp connecting the rail and sleeper were also modeled as the element with spring coefficient. The train wheel is modeled in the actual size and moved on the rail with 300 km/hr speed. The deformation characteristics at each point of the rail and the ground were considered in detail when moving the train wheel. The analysis results were compared with those from the two-dimensional analysis without considering moving load. The research results show that displacement and stress were greater in the three-dimensional analysis than in other analyses, and the three-dimensional analysis with moving load should be performed to evaluate railway performance.

  • PDF

Two-Dimensional Analysis of Unsteady Flow Through One Stage of Axial Turbine (II) (1단 축류 터빈의 비정상 내부유동특성에 관한 2차원 해석 (II))

  • Park, Jun-Young;Um, In-Sik;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1518-1526
    • /
    • 2001
  • In this paper, the mechanism of unsteady potential interaction and wake interaction in one stage axial turbine is numerically investigated at design point in two-dimensional viewpoint. The numerical technique used is the upwind scheme of Van-Leer's Flux Vector Splitting (FVS) and Cubic spline interpolation is applied on zonal interface between stator and rotor. The inviscid analysis is used to embody the influence of potential interaction only and viscous analysis is used to embody the influences of both potential interaction and wake interaction at the same time. The potential-flow disturbance from the stator into a rotor passage and the periodic blockage effect of rotor produce the unsteady pressure on the blade surface in inviscid analysis. After the wake is cut by rotor, two counterrotating votical patterns flanking the wake centerline in the passage are generated. So, these phenomena magnify the unsteady pressure in viscous analysis than that in inviscid analysis. The resulting unsteady forces on the rotor, generated by the combined interaction of the two effects by potential and wake interaction, are discussed.

Finite element formulations for free field one-dimensional shear wave propagation

  • Sun-Hoon Kim;Kwang-Jin Kim
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.163-174
    • /
    • 2024
  • Dynamic equilibrium equations for finite element analysis were derived for the free field one-dimensional shear wave propagation through the horizontally layered soil deposits with the elastic half-space. We expressed Rayleigh's viscous damping consisting of mass and stiffness proportional terms. We considered two cases where damping matrices are defined in the total and relative displacement fields. Two forms of equilibrium equations are presented; one in terms of total motions and the other in terms of relative motions. To evaluate the performance of new equilibrium equations, we conducted two sets of site response analyses and directly compared them with the exact closed-form frequency domain solution. Results show that the base shear force as earthquake load represents the simpler form of equilibrium equation to be used for the finite element method. Conventional finite element procedure using base acceleration as earthquake load predicts exact solution reasonably well even in soil deposits with unrealistically high damping.

Zero-Dimensional Modeling of Plasma Generator in Electrothermal Gun (전열포 플라즈마 생성장치의 영차원 해석모델)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.1-9
    • /
    • 2015
  • This paper introduces a zero-dimensional modeling on the plasma generation in electrothermal gun operation. The plasma generator consists of alumina bore and aluminum electrodes which is electrically powered by outer pulse forming network and, traditionally, its numerical simulations have employed time-dependent one-dimensional governing equations. However, by assuming isothermal approximation along the bore and choked bore exit condition, present analysis simplifies the mass and energy equations into zero-dimensional approximation of plasma conditions coupled with mass ablation model and plasma property evaluation. The numerical results show good agreement with the corresponding one-dimensional computations and thus verify the present modeling approach.

An Analytical Study on the Determination of the Lowest Improvement Depth of Deep Mixing Method (심층혼합공법의 최저 개량 심도 결정에 관한 해석적 연구)

  • Park, Choon-Sik;Song, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Design techniques for the deep mixing method, one of the soft ground improvement methods, include two ways to interpret the ground as composite ground and pile ground. However, since comparative studies on these two approaches are insufficient, it is difficult to clearly define the analysis criteria in the design. In this study, two-dimensional and three-dimensional analyses have been performed with different conditions. The three conditions, the embankment height, depth of soft ground, and replacement ratio of reinforcement zones were varied and the analysis was performed on the basis of the assumption of composite ground and pile ground for each condition. As a result, the minimum depth of improvement in the two-dimensional analysis was deeper by 6.85~9.08% than in the three-dimensional analysis. The pile ground analysis showed that the depth of improvement was deeper by 12.22~14.45% than the composite ground analysis. Based on these results, it is concluded that for more accurate design, three-dimensional analysis should be performed rather than two-dimensional analysis. also, it is judged that necessary to analyze the ground as composite ground for economical design, and as the pile ground analysis for stable design.

Analysis of LBLOCA of APR1400 with 3D RPV model using TRACE

  • Yunseok Lee;Youngjae Lee;Ae Ju Chung;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1651-1664
    • /
    • 2023
  • It is very difficult to capture the multi-dimensional phenomena such as asymmetric flow and temperature distributions with the one-dimensional (1D) model, obviously, due to its inherent limitation. In order to overcome such a limitation of the 1D representation, many state-of-the-art system codes have equipped a three-dimensional (3D) component for multi-dimensional analysis capability. In this study, a standard multi-dimensional analysis model of APR1400 (Advanced Power Reactor 1400) has been developed using TRACE (TRAC/RELAP Advanced Computational Engine). The entire reactor pressure vessel (RPV) of APR1400 has been modeled using a single 3D component. The fuels in the reactor core have been described with detailed and coarse representations, respectively, to figure out the impact of the fuel description. Using both 3D RPV models, a comparative analysis has been performed postulating a double-ended guillotine break at a cold leg. Based on the results of comparative analysis, it is revealed that both models show no significant difference in general plant behavior and the model with coarse fuel model could be used for faster transient analysis without reactor kinetics coupling. The analysis indicates that the asymmetric temperature and flow distributions are captured during the transient, and such nonuniform distributions contribute to asymmetric quenching behaviors during blowdown and reflood phases. Such asymmetries are directly connected to the figure of merits in the LBLOCA analysis. Therefore, it is recommended to employ a multi-dimensional RPV model with a detailed fuel description for a realistic safety analysis with the consideration of the spatial configuration of the reactor core.