• Title/Summary/Keyword: One-Dimensional

Search Result 6,805, Processing Time 0.037 seconds

Polydiacetylene-Based Chemo-/Biosensor of Label Free System with Various Sensing Tools (다양한 감지 방법을 갖고 있는 폴리디아세틸렌 기반 비표지 화학/바이오센서)

  • Park, Hyun-Kyu;Park, Hyun-Gyu;Chung, Bong-Hyun
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.409-413
    • /
    • 2007
  • Polydiacetylene(PDA)-based sensors possess a number of properties that can be successfully applied for label-free detection system. PDA is one of the most attractive color-generating materials, with growing applications as sensors. Here we introduce various PDA-based devices, used as biosensor, chemosensor, thermosensor, and optoelectronics sensor. In general, PDA liposomes and films are closely packed and properly designed for polymerization via 1,4-addition reaction to form an ene-yne alternating polymer chain. PDA-based two/three dimensional structures have been used for colorimetric or fluorescent devices, sensing biological as well as chemical components. This color-generating material also present a very high charge carrier mobility, allowing its application as field-effect transistor (FET). The immobilized PDA structures or films have distinct advantages for the detection of low concentration target molecules over the aqueous solution-based detection systems. In the present review, reported detection methods by using various PDA structures are summarized with updated references.

An Experimental Study on the Evaluation of Smear Effect Considering In-situ Conditions (현장여건을 고려한 스미어 영향 평가에 관한 실험적 연구)

  • Park, Yeong-Mog
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.85-94
    • /
    • 2012
  • Evaluation of the smear effect caused by mandrel penetration into soft ground for a vertical drain installation is very important to predict the consolidation time of soft ground improvement. 30 kinds of laboratory model tests considering in situ conditions were conducted to investigate the formation of a smear zone and the decrease of coefficient of permeability in the disturbed zone. Three types(C(clay):M(silt)=1:1, 0.5:0.5, and 0:1) of reconstituted samples were used for 3 dimensional smear zone test. An experimental study was performed focusing on length of mandrel penetration, mandrel shape and size, earth pressure, and ground condition(unit weight and grain size distributions). Laboratory test results show that the length of mandrel penetration is the most critical factor for the formation of smear zone. As a result, the ratio between diameter of the smear zone($d_s$) and that of mandrel($d_m$) at field using long mandrel becomes larger than conventional $d_s/d_m$. The ratio between $d_s$ and $d_m$ ranges from 1.89 and 2.48 with the sample at C:M=1:0. It was also found that the $d_s/d_m$ value with the round shape of the mandrel is smaller than that of diamond one. The value of $d_s/d_m$ decreased with larger mandrel size, lower unit weight, and higher earth pressure. However, higher silt content led to increase of $d_s/d_m$. The ratio between coefficient of horizontal permeability in the smear zone($k_{hs}$) and that of undisturbed zone($k_{ho}$) ranged from 0.70 to 0.85. The test results imply that factors and values affecting $k_{hs}/k_{ho}$ show similar tendency with $d_s/d_m$.

Evaluation of Accuracy of Modified Equivalent Linear Method (수정된 등가선형해석기법의 정확성 평가)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Duhee;Kim, Kwangkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.5-20
    • /
    • 2010
  • One-dimensional equivalent linear site response analysis is widely used in practice due to its simplicity, requiring only few input parameters, and low computational cost. The main limitation of the procedure is that it is essentially a linear method, in which the time dependent change in the soil properties cannot be modeled and constant values of shear modulus and damping is used throughout the duration of the analysis. Various forms of modified equivalent linear analyses have been developed to enhance the accuracy of the equivalent linear method by incorporating the dependence of the shear strain with the loading frequency. The methods are identical in that it uses the shear strain Fourier spectrum as the backbone of the analysis, but differ in the method in which the strain Fourier spectrum is smoothed. This study used two domestically measured soil profiles to perform a series of nonlinear, equivalent linear, and modified equivalent linear site response analyses to verify the accuracy of two modified procedures. The results of the analyses indicate that the modified equivalent linear analysis can highly overestimate the amplification of the high frequency components of the ground motion. The degree of overestimation is dependent on the characteristics of the input ground motion. Use of a motion rich in high frequency contents can result in unrealistic response.

Numerical Analysis on the Flow in Cannulae having Side Holes (사이드 홀을 가진 케뉼라에 관한 수치해석적 연구)

  • Park Joong Yull;Park Chan Young;Min Byoung Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.489-496
    • /
    • 2004
  • Insertion of cannulae into vessels may disturb the blood flow doing non-physiological load and stress on blood cells such that ADP may increase and result in hemolysis. Authors used the computational method to simulate the 3-dimensional blood flow inside of the cannula using numerical method. We limited the research to within the drainage cannulae with side holes inserted through the human vein. In this paper, 9 different cannulae with side holes categorized by the number of side holes of 4, 12, and 20, and also categorized by the array type of side holes of staggered array, in-line array, and alternative in-line array were studied and compared to the cannula with no side holes by using CFD analysis. We evaluated the flow rate, the wall shear stress, and the shear rate and compared them with one another to estimate the effect of the side holes. The flow rate is not proportional to the number of the side holes. However, larger number of side holes can reduce the mean shear rate. Both the number and the array type of side holes play an important role on the fluid dynamics of the blood flow in cannulae.

Finite Element Analysis for the Contact Stress of Ultra-high Molecular Weight Polyethylene in Total Knee Arthroplasty (전 슬관절 치환 성형술에 사용되는 초고분자량 폴리에틸렌 삽입물의 접촉응력에 관한 유한요소해석)

  • Jo, Cheol-Hyeong;Choe, Jae-Bong;Choe, Gwi-Won;Yun, Gang-Seop;Gang, Seung-Baek
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 1999
  • Because of bone resorption, wear of ultra-high molecular weight polyethylene(UHMWPE) in total knee arthroplasty has been recognized as a major factor in long-term failure of knee implant. The surface damage and the following harmful wear debris of UHMWPE is largely related to contact stress. Most of the previous studies focused on the contact condition only at the articulating surface of UHMWPE. Recently, contact stress at the metal-backing interface has been implicated as one of major factors in UHMWPE wear. Therefore, the purpose of the is study is to investigate the effect of the contact stress for different thickness, conformity friction coefficient, and flexion degree of the UHMWPE component in total knee system, considering the contact conditions at both interfaces. In this study, a two-dimensional non-linear plane strain finite element model was developed. The results showed that the maximum value of von-Mises stress occurred below the articulating surface and the contact stress was lower for the more conforming models. All-polyethylene component showed lower stress distribution than the metal-backed component. With increased friction coefficient on the tibiofemoral contact surface, the maximum shear stress increased about twofold.

  • PDF

Optimization of Ethanol Extraction Conditions for Antioxidants from Zizyphus jujuba Mill. Leaves Using Response Surface Methodology (반응표면분석법을 이용한 대추잎 항산화물질의 에탄올추출조건 최적화)

  • Min, Dul-Lae;Lim, Seok-Won;Ahn, Jun-Bae;Choi, Young-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.733-738
    • /
    • 2010
  • The leaves of Zizyphus jujuba have been used for various purposes including medicine and nutrition. In this study, the conditions for the ethanol extraction of antioxidant from Zizyphus jujuba were optimized using response surface methodology (RSM). A Box-Behnken design containing 15 experimental runs with three replicates was employed to study the effects of solvent extraction conditions such as extraction temperature ($^{\circ}C$, $X_1$), extraction time (min, $X_2$), and ethanol concentration (%, $X_3$) on the extraction yield of antioxidants from Zizyphus jujuba. The yields of total polyphenols and total flavonoid, and electron donating activity (EDA) were considered as response variables. The second-order polynomial model gave a satisfactory description of the experimental results showing different patterns of extraction conditions with variation in the linear, quadratic, and interaction effects of the independent variables. Based on four-dimensional RSM, one of the optimized sets of conditions was 45% ethanol, $45^{\circ}C$, and an extraction time of 15 min. Under the optimal conditions, the predicted values were 177.64 mg/g dry basis, 35.99 mg/g dry basis, and 86.14% Vit.C equivalents for total polyphenols, total flavonoids, and EDA, respectively. The experimental values showed good agreements with the predicted values.

Design of Data-centroid Radial Basis Function Neural Network with Extended Polynomial Type and Its Optimization (데이터 중심 다항식 확장형 RBF 신경회로망의 설계 및 최적화)

  • Oh, Sung-Kwun;Kim, Young-Hoon;Park, Ho-Sung;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.639-647
    • /
    • 2011
  • In this paper, we introduce a design methodology of data-centroid Radial Basis Function neural networks with extended polynomial function. The two underlying design mechanisms of such networks involve K-means clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on K-means clustering method for efficient processing of data and the optimization of model was carried out using PSO. In this paper, as the connection weight of RBF neural networks, we are able to use four types of polynomials such as simplified, linear, quadratic, and modified quadratic. Using K-means clustering, the center values of Gaussian function as activation function are selected. And the PSO-based RBF neural networks results in a structurally optimized structure and comes with a higher level of flexibility than the one encountered in the conventional RBF neural networks. The PSO-based design procedure being applied at each node of RBF neural networks leads to the selection of preferred parameters with specific local characteristics (such as the number of input variables, a specific set of input variables, and the distribution constant value in activation function) available within the RBF neural networks. To evaluate the performance of the proposed data-centroid RBF neural network with extended polynomial function, the model is experimented with using the nonlinear process data(2-Dimensional synthetic data and Mackey-Glass time series process data) and the Machine Learning dataset(NOx emission process data in gas turbine plant, Automobile Miles per Gallon(MPG) data, and Boston housing data). For the characteristic analysis of the given entire dataset with non-linearity as well as the efficient construction and evaluation of the dynamic network model, the partition of the given entire dataset distinguishes between two cases of Division I(training dataset and testing dataset) and Division II(training dataset, validation dataset, and testing dataset). A comparative analysis shows that the proposed RBF neural networks produces model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Fast Median Filtering Algorithms for Real-Valued 2-dimensional Data (실수형 2차원 데이터를 위한 고속 미디언 필터링 알고리즘)

  • Cho, Tai-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2715-2720
    • /
    • 2014
  • Median filtering is very effective to remove impulse type noises, so it has been widely used in many signal processing applications. However, due to the time complexity of its non-linearity, median filtering is often used using a small filter window size. A lot of work has been done on devising fast median filtering algorithms, but most of them can be efficiently applied to input data with finite integer values like images. Little work has been carried out on fast 2-d median filtering algorithms that can deal with real-valued 2-d data. In this paper, a fast and simple median 2-d filter is presented, and its performance is compared with the Matlab's 2-d median filter and a heap-based 2-d median filter. The proposed algorithm is shown to be much faster than the Matlab's 2-d median filter and consistently faster than the heap-based algorithm that is much more complicated than the proposed one. Also, a more efficient median filtering scheme for 2-d real valued data with a finite range of values is presented that uses higher-bit integer 2-d median filtering with negligible quantization errors.

A Personal Digital Library on a Distributed Mobile Multiagents Platform (분산 모바일 멀티에이전트 플랫폼을 이용한 사용자 기반 디지털 라이브러리 구축)

  • Cho Young Im
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1637-1648
    • /
    • 2004
  • When digital libraries are developed by the traditional client/sever system using a single agent on the distributed environment, several problems occur. First, as the search method is one dimensional, the search results have little relationship to each other. Second, the results do not reflect the user's preference. Third, whenever a client connects to the server, users have to receive the certification. Therefore, the retrieval of documents is less efficient causing dissatisfaction with the system. I propose a new platform of mobile multiagents for a personal digital library to overcome these problems. To develop this new platform I combine the existing DECAF multiagents platform with the Voyager mobile ORB and propose a new negotiation algorithm and scheduling algorithm. Although there has been some research for a personal digital library, I believe there have been few studies on their integration and systemization. For searches of related information, the proposed platform could increase the relationship of search results by subdividing the related documents, which are classified by a supervised neural network. For the user's preference, as some modular clients are applied to a neural network, the search results are optimized. By combining a mobile and multiagents platform a new mobile, multiagents platform is developed in order to decrease a network burden. Furthermore, a new negotiation algorithm and a scheduling algorithm are activated for the effectiveness of PDS. The results of the simulation demonstrate that as the number of servers and agents are increased, the search time for PDS decreases while the degree of the user's satisfaction is four times greater than with the C/S model.

Visual Representation of Temporal Properties in Formal Specification and Analysis using a Spatial Process Algebra (공간 프로세스 대수를 이용한 정형 명세와 분석에서의 시간속성의 시각화)

  • On, Jin-Ho;Choi, Jung-Rhan;Lee, Moon-Kun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.339-352
    • /
    • 2009
  • There are a number of formal methods for distributed real-time systems in ubiquitous computing to analyze and verify the behavioral, temporal and the spatial properties of the systems. However most of the methods reveal structural and fundamental limitations of complexity due to mixture of spatial and behavioral representations. Further temporal specification makes the complexity more complicate. In order to overcome the limitations, this paper presents a new formal method, called Timed Calculus of Abstract Real-Time Distribution, Mobility and Interaction(t-CARDMI). t-CARDMI separates spatial representation from behavioral representation to simplify the complexity. Further temporal specification is permitted only in the behavioral representation to make the complexity less complicate. The distinctive features of the temporal properties in t-CARDMI include waiting time, execution time, deadline, timeout action, periodic action, etc. both in movement and interaction behaviors. For analysis and verification of spatial and temporal properties of the systems in specification, t-CARDMI presents Timed Action Graph (TAG), where the spatial and temporal properties are visually represented in a two-dimensional diagram with the pictorial distribution of movements and interactions. t-CARDMI can be considered to be one of the most innovative formal methods in distributed real-time systems in ubiquitous computing to specify, analyze and verify the spatial, behavioral and the temporal properties of the systems very efficiently and effectively. The paper presents the formal syntax and semantics of t-CARDMI with a tool, called SAVE, for a ubiquitous healthcare application.