• Title/Summary/Keyword: One Stage Turbine

Search Result 78, Processing Time 0.033 seconds

Numerical Analysis of Two-Stage Turbopump Turbines (2단형 터보펌프 터빈의 유동해석)

  • Park, Pyun-Goo;Jeong, Eun-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.151-156
    • /
    • 2008
  • Numerical analyses of two-stage turbopump turbines were conducted. One of the candidates for the 1st rotor was selected based on the result of the numerical investigation. Besides, the effects of the stator height on the turbine performance were studied. Finally, the performance of the entire two-stage turbine was predicted by numerical calculation. The result showed that the two-stage turbine produces more specific power than a one-stage turbine.

  • PDF

Performance Analysis of HP Steam Turbines. of LNG Carriers (LNG 운반선용 증기터빈 고압단의 성능해석)

  • Park, Jong-Hwoo;Chung, Kyung-Nam;Kim, Yang-Ik;Cho, Seoung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.275-278
    • /
    • 2006
  • A steam turbine is one of propulsion systems of a LNG carrier, which consists of high pressure (HP) and low pressure (LP) turbines. In order to obtain high power, each one has the form of a multi-stage turbine. Especially, the first stage of a HP turbine is Curtis stage and uses partial admission considering the turbine efficiency. The performance of a HP turbine can be predicted by a mean-line analysis method, because the relatively large value of hub-tip ratio makes the three-dimensional losses small. In this study, a performance analysis method is developed for a multi-stage HP turbine using Chen's loss model developed for the transonic steam turbines. To consider the feature of partial admission, different partial admission models are reviewed, This analysis method can be used in partial load conditions as well as full load condition. The calculation results are also compared with the CFD results about some simple cases to check the accuracy of the program. Performance of two HP turbine models are calculated, and the calculation results are compared with the designed data. The comparison shows the qualitative performance analysis result.

  • PDF

Aerodynamic design and optimization of a multi-stage axial flow turbine using a one-dimensional method

  • Xinyang Yin;Hanqiong Wang;Jinguang Yang;Yan Liu;Yang Zhao;Jinhu Yang
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.245-256
    • /
    • 2023
  • In order to improve aerodynamic performance of multi-stage axial flow turbines used in aircraft engines, a one-dimensional aerodynamic design and optimization framework is constructed. In the method, flow path is generated by solving mass continuation and energy conservation with loss computed by the Craig & Cox model; Also real gas properties has been taken into consideration. To obtain an optimal result, a multi-objective genetic algorithm is used to optimize the efficiencies and determine values of various design variables; Final design can be selected from obtained Pareto optimal solution sets. A three-stage axial turbine is used to verify the effectiveness of the developed optimization framework, and designs are checked by three-dimensional CFD simulation. Results show that the aerodynamic performance of the optimized turbine has been significantly improved at design point, with the total-to-total efficiency increased by 1.17% and the total-to-static efficiency increased by 1.48%. As for the off-design performance, the optimized one is improved at all working points except those at small mass flow.

Effect of Axial Spacing between the Components on the Performance of a Counter Rotating Turbine

  • Subbarao, Rayapati;Govardhan, Mukka
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.170-176
    • /
    • 2013
  • Counter Rotating Turbine (CRT) is an axial turbine with a nozzle followed by a rotor and another rotor that rotates in the opposite direction of the first one. Axial spacing between blade rows plays major role in its performance. Present work involves computationally studying the performance and flow field of CRT with axial spacing of 10, 30 and 70% for different mass flow rates. The turbine components are modeled for all the three spacing. Velocity, pressure, entropy and Mach number distributions across turbine stage are analyzed. Effect of spacing on losses and performance in case of stage, Rotor1 and Rotor2 are elaborated. Results confirm that an optimum axial spacing between turbine components can be obtained for the improved performance of CRT.

A Study on the One-Stage 3-Dimensional Axial Turbine Performance Test with Different Incidence Angle (입사각 변경에 따른 단단 3차원 축류형 터빈의 성능시험에 관한 연구)

  • 조수용;박찬우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.24-31
    • /
    • 2001
  • An axial-type turbine design technology is developed. In order to design one-stage turbine, the preliminary design method is applied, and then design parameters are chosen after analyzing gas properties within the turbine passage using the streamline curvature method. Stator blade is designed using C4 profile, and rotor blade is designed using shape parameters. Stator is manufactured as an integral type and rotor is manufactured to be disassembled from the disc for changing blade incidence angle. The output power from the rotor is measured with various RPM and input power. Experimental results show that the maximum efficiency of turbine rotor is obtained on the design point, and the output power is proportionally decreased with the negative incidence angle even the test turbine is a reaction turbine. The efficiency of turbine rotor is decreased to 5% by $7.5^{\cire}$ negative incidence angle from the designed value.

  • PDF

A Study of One-Stage 3-Dimensional Axial Turbine Performance Test (단단 3차원 축류형 터빈 성능시험에 관한연구)

  • 김동식;조수용
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.59-62
    • /
    • 2001
  • An axial-type turbine design technology is developed. In order to design one-stage turbine, preliminary design method is applied, and then design parameters are chosen after analyzing the gas properties within the turbine passage using the streamline curvature method. Stator blade is designed using C4 Profile, and rotor blade is designed using shape parameters. The output power is measured with various RPM and input power. The experimental result shows that the output power is proportionally decreased with the negative incidence angle.

  • PDF

AERODYNAMIC DESIGN AND NUMERICAL ANALYSIS OF AN SMALL SIZE AXIAL AIR TURBINE (소형 축류 공압 터빈 공력 설계 및 수치 해석)

  • Park, S.Y.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.567-571
    • /
    • 2011
  • Air Starter motors are used for the start of medium-speed diesel engine. One of the main part of air starting motors is the axial turbine stage. In this study, design of 1-stage axial type turbine for 14kw class air starter motors has been performed. The turbine blade was designed based on mean-line analysis. 1-D design calculation and numerical analysis with CFD were conducted iteratively. The validation between 1-D design method and numerical analysis for axial clearance has been performed. It revealed that there is optimum axial clearance of turbine design.

  • PDF

Two-Dimensional Analysis of Unsteady Flow Through One Stage of Axial Turbine (II) (1단 축류 터빈의 비정상 내부유동특성에 관한 2차원 해석 (II))

  • Park, Jun-Young;Um, In-Sik;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1518-1526
    • /
    • 2001
  • In this paper, the mechanism of unsteady potential interaction and wake interaction in one stage axial turbine is numerically investigated at design point in two-dimensional viewpoint. The numerical technique used is the upwind scheme of Van-Leer's Flux Vector Splitting (FVS) and Cubic spline interpolation is applied on zonal interface between stator and rotor. The inviscid analysis is used to embody the influence of potential interaction only and viscous analysis is used to embody the influences of both potential interaction and wake interaction at the same time. The potential-flow disturbance from the stator into a rotor passage and the periodic blockage effect of rotor produce the unsteady pressure on the blade surface in inviscid analysis. After the wake is cut by rotor, two counterrotating votical patterns flanking the wake centerline in the passage are generated. So, these phenomena magnify the unsteady pressure in viscous analysis than that in inviscid analysis. The resulting unsteady forces on the rotor, generated by the combined interaction of the two effects by potential and wake interaction, are discussed.

Flow simulation and efficiency hill chart prediction for a Propeller turbine

  • Vu, Thi;Koller, Marcel;Gauthier, Maxime;Deschenes, Claire
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.243-254
    • /
    • 2011
  • In the present paper, we focus on the flow computation of a low head Propeller turbine at a wide range of design and off-design operating conditions. First, we will present the results on the efficiency hill chart prediction of the Propeller turbine and discuss the consequences of using non-homologous blade geometries for the CFD simulation. The flow characteristics of the entire turbine will be also investigated and compared with experimental data at different measurement planes. Two operating conditions are selected, the first one at the best efficiency point and the second one at part load condition. At the same time, for the same selected operating points, the numerical results for the entire turbine simulation will be compared with flow simulation with our standard stage calculation approach which includes only guide vane, runner and draft tube geometries.

Turbine Performance Degradation due to Blade Surface Roughness (블레이드 표면 거칠기에 따른 터빈 성능저하)

  • Park, Il-Young;Yun, Yong-Il;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2012-2017
    • /
    • 2003
  • This paper reports on the influence of blade surface roughness on turbine efficiency. The performance of a low speed one-stage axial turbine with roughened blade surfaces was evaluated. Sandpaper with equivalent sandgrain roughness ($k_s$) was used to roughen the blades. Efficiency (${\eta}/{\eta}_0$) decreases by 4.5 % with sandgrain size of 400 ${\mu}m$ on the stator suction surface.

  • PDF