• 제목/요약/키워드: Onderdonk's equation

검색결과 3건 처리시간 0.02초

전선의 용단전류 특성에 근거한 단락과 과부하 판별에 관한 연구 (A Study on Discrimination between Short-Circuit and Overload based on the Characteristics of the Fusing Current of an Electrical Wire)

  • 송길목;노영수
    • 조명전기설비학회논문지
    • /
    • 제21권10호
    • /
    • pp.176-180
    • /
    • 2007
  • 단락 또는 과부하에 의하여 전선에 과전류가 흐를 경우 전선은 용단되고 이것은 전기화재를 발생시킬 수 있다. 본 논문에서는 단락과 과부하를 판별하기 위하여 전선의 용단전류 특성을 연구하였다. 실험에서는 여러 가지 직경의 나전선에 프리스 식에 근거하여 정한 용단전류를 공급하고 용단시간을 측정하였다. 실험 결과 측정한 용단전류는 온더동크 식을 잘 만족하였다. 측정결과와 국제전기기술표준에서 제시하는 단락전류를 비교하여 나동선에 대한 단락전류를 결정하는 변수 k값이 약 300임을 보였다. 이 값에 근거하여 5초 이내에 단락되는 전선의 용단전류를 직경의 함수로 표현할 수 있다. 결과적으로 이 용단전류의 식은 단락과 과부하를 판별할 수 있는 기준을 제공한다.

전자기 발사장치에 적용 가능한 코일건 설계 및 실험 (Design and Experiment of Coil gun to Apply Electomagnetic Launcher System)

  • 이수정;김진호
    • 한국산학기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.3455-3459
    • /
    • 2014
  • 본 논문은 전자기 발사체에서 피투사체의 높은 발사력을 위한 코일건 설계 및 실험을 다루고 있다. 현재 코일건은 전자기 발사체에 적용하기 위해 많은 연구가 진행되고 있다. 코일건은 솔레노이드 형태의 코일에 전류 인가 시, 플레밍의 오른손 법칙에 의하여 발생하는 전자기력에 의해 피투사체를 추진시키는 원리이다. 피투사체의 발사력은 코일에 흐르는 전류가 생성하는 자기력과 비례한다. 전류는 코일의 수명에 영향을 미치므로 전류의 한계점이 존재한다. 따라서, 전류의 한계점을 초과하지 않고 피투사체가 받는 자기력이 최대가 되는 코일건의 설계가 요구된다. 이를 위해 먼저 코일건의 자속밀도, 자기력을 계산하고, Onderdonk's 식을 이용하여 코일의 전류 한계점을 찾는다. 솔레노이드를 설계하기 위해서 전류 한계점을 초과하지 않는 조건을 만족하며 코일건의 자기력을 최대로 가지는 권수를 알아낸다. 설계 결과에 따라 시제품을 제작하여 피투사체의 속도를 측정하기 위한 실험을 하였다. 발사된 피투사체는 CCD 카메라를 이용하여 촬영 및 분석하였으며, 평균속도 21m/s임을 알 수 있었다. 또한, 상용 전자기 해석 소프트웨어 MAXWELL을 이용한 자속 밀도 해석값와 실험값을 비교한 결과, 오차는 약 9.5%이었다.

피투사체 속도 향상을 위한 코일건의 기구 변수 최적 설계 (Optimal Parametric Design of Coil Gun to Improve Muzzle Velocity)

  • 이수정;이주희;이동연;서태원;김진호
    • 한국생산제조학회지
    • /
    • 제23권4호
    • /
    • pp.408-412
    • /
    • 2014
  • An electromagnetic launching system presents a viable projectile propulsion alternative with low cost and minimal environmental drawbacks. A coil gun system propels a projectile using an electromagnetic force and the system is mainly employed in military weapon systems and space launch systems. In this paper, we perform optimization design to improve the muzzle velocity by analyzing the sensitivity. The muzzle velocity, which is the most important design function variable, is affected by design variables including the number of axial turns in the electromagnetic coil, number of radial turns in the electromagnetic coil, initial distance between the projectile and the coil, inner radius of the electromagnetic coil, and length of the projectile. An orthogonal arrays matrix is configured, and a finite element analysis is performed utilizing the commercial electromagnetic analysis software MAXWELL. The muzzle velocity of the optimal design is 62.4% greater than that of the initial design.