• Title/Summary/Keyword: On-orbit data

Search Result 402, Processing Time 0.024 seconds

Performance Analysis of the KOMPSAT-1 Orbit Determination Using GPS Navigation Solutions (GPS 항행해를 이용한 아리랑 1호의 궤도결정 성능분석 연구)

  • Kim, Hae-Dong;Choi, Hae-Jin;Kim, Eun-Kyou
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.43-52
    • /
    • 2004
  • In this paper, the performance of the KOMPSAT-1 orbit determination (OD) accuracy at the ground station was analyzed by using the flight data. The Bayesian least squares estimation was used for the orbit determination and the assessment of the orbit accuracy was evaluated based on orbit overlap comparisons. We also compared the result from OD using GPS navigation solutions with NORAD TLE and the result from OD using range data. Furthermore, the effect of observation type and OBT drift on the accuracy was investigated. As a consequence, It is shown that the OD accuracy using only GPS position data is on the order of 5m RMS (Root Mean Square) with 4 hrs arc overlap for the 30hr arc and the GPS velocity data is not proper as a observation for the OD due to its inferior quality. The significant deterioration of the accuracy due to the critical clock bias was not founded by means of the comparison of OD result from other observations.

Analysis of Orbit Determination of the KARISMA Using Radar Tracking Data of a LEO Satellite (저궤도위성의 레이더 관측데이터를 이용한 KARISMA의 궤도결정 결과 분석)

  • Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.1016-1027
    • /
    • 2015
  • In this paper, a orbit determination process was carried out based on KARISMA(KARI Collision Risk Management System) developed by KARI(Korea Aerospace Research Institute) to verify the orbit determination performance of this system, in which radar tracking data of a space debris was used. The real radar tracking data were obtained from TIRA(Tracking & Imaging Radar) system operated by GSOC(German Space Operation Center) for the KITSAT-3 finished satellite. And orbit determination error was approximately 60m compared to that of the GSOC's orbit determination result from the same radar tracking data. However, those results were influenced due to the insufficient information on the radar tracking data, such as error correction. To verify and confirm it, the error analysis was demonstrated and first observation data arc which has huge observation error was rejected. In this result, the orbit determination error was reduced such as approximately 25m. Therefore, if there are some observation data information such as error correction data, it is expected to improve the orbit determination accuracy.

An Analysis of the KOMPSAT-1 Operational Orbit Evolution Over 3 Years (아리랑 1호 임무기간 3년 동안의 궤도변화 분석)

  • Kim,Hae-Dong;Choe,Hae-Jin;Kim,Eun-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.40-50
    • /
    • 2003
  • The operational orbit evolution of the KOMPSAT-l over 3 years was analyzed. During LEOP, four orbit maneuvers were performed to obtain the optimized orbit and eight safe-hold modes happened. The effects of unpredictable occurrence of the safe-hold mode and the highest solar activity on the orbit evolution during the mission life were analyzed. The comparison of orbital elements between long-term predicted orbit and determined orbit from observed data was also performed. The operational orbit started from the optimized one was evolved within the boundary of the designed mission orbit except altitude and it was verified the sun-synchronous orbit was successfully maintained.

Precise Orbit Determination Based on the Unscented Transform for Optical Observations

  • Hwang, Hyewon;Lee, Eunji;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.249-264
    • /
    • 2019
  • In this study, the precise orbit determination (POD) software is developed for optical observation. To improve the performance of the estimation algorithm, a nonlinear batch filter, based on the unscented transform (UT) that overcomes the disadvantages of the least-squares (LS) batch filter, is utilized. The LS and UT batch filter algorithms are verified through numerical simulation analysis using artificial optical measurements. We use the real optical observation data of a low Earth orbit (LEO) satellite, Cryosat-2, observed from optical wide-field patrol network (OWL-Net), to verify the performance of the POD software developed. The effects of light travel time, annual aberration, and diurnal aberration are considered as error models to correct OWL-Net data. As a result of POD, measurement residual and estimated state vector of the LS batch filter converge to the local minimum when the initial orbit error is large or the initial covariance matrix is smaller than the initial error level. However, UT batch filter converges to the global minimum, irrespective of the initial orbit error and the initial covariance matrix.

New In-Orbit Pixel Correction Method

  • Kim Youngsun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Chang Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.604-607
    • /
    • 2005
  • All CCD pixels do not react uniformly even if the light of same radiance enters into the camera. This comes from the different camera optical characteristics, the read-out characteristics, the pixel own characteristics and so on. Usually, the image data of satellite camera can be corrected by the various image-processing methods in the ground. However, sometimes, the in-orbit correction is needed to get the higher quality image. Especially high frequency pixel correction in the middle of in-orbit mission is needed because the in-orbit data compression with the high frequency loss is essential to transmit many data in real time due to the limited RF bandwidth. In this case, this high frequency correction can prevent have to have any unnecessary high frequency loss. This in-orbit correction can be done by the specific correction table, which consists of the gain and the offset correction value for each pixel. So, it is very important to get more accurate correction table for good correction results. This paper shows the new algorithm to get accurate pixel correction table. This algorithm shall be verified theoretically and also verified with the various simulation and the test results.

  • PDF

Analysis of Scaling Parameters of the Batch Unscented Transformation for Precision Orbit Determination using Satellite Laser Ranging Data

  • Kim, Jae-Hyuk;Park, Sang-Young;Kim, Young-Rok;Park, Eun-Seo;Jo, Jung-Hyun;Lim, Hyung-Chul;Park, Jang-Hyun;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.183-192
    • /
    • 2011
  • The current study analyzes the effects of the scaling parameters of the batch unscented transformation on precision satellite orbit determination. Satellite laser ranging (SLR) data are used in the orbit determination algorithm, which consists of dynamics model, observation model and filtering algorithm composed of the batch unscented transformation. TOPEX/Poseidon SLR data are used by utilizing the normal point (NP) data observed from ground station. The filtering algorithm includes a repeated series of processes to determine the appropriate scaling parameters for the batch unscented transformation. To determine appropriate scaling parameters, general ranges of the scaling parameters of ${\alpha}$, ${\beta}$, k, $\lambda$ are established. Depending on the range settings, each parameter was assigned to the filtering algorithm at regular intervals. Appropriate scaling parameters are determined for observation data obtained from several observatories, by analyzing the relationship between tuning properties of the scaling parameters and estimated orbit precision. The orbit determination of satellite using the batch unscented transformation can achieve levels of accuracy within several tens of cm with the appropriate scaling parameters. The analyses in the present study give insights into the roles of scaling parameters in the batch unscented transformation method.

A Study on Geometric Correction Method for RADARSAT-1 SAR Satellite Images Acquired by Same Satellite Orbit (동일궤도 다중 RADARSAT-1 SAR 위성영상의 기하보정방법에 관한 연구)

  • Song, Yeong-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.605-612
    • /
    • 2010
  • Numberous satellites have monitored the Earth in order to detect changes in a large area. These satellites provide orbit information such as ephemeris data, RPC coefficients and etc. besides image data. If we can use such orbit data afforded by satellite, we can reduce the number of control point for geo-referencing. This paper shows the efficient geometric correction method of strip-satellite RADARSAT-l SAR images acquired by same orbit using ephemeris data, single control point and virtual control points. For accuracy analysis of proposed method, this paper compared the image geometrically corrected by the proposed method to the image corrected by ERDAS Imagine.

Development Strategy of Orbit Determination System for Korea's Lunar Mission: Lessons from ESA, JAXA, ISRO and CNSA's Experiences

  • Song, Young-Joo;Ahn, Sang-Il;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.247-264
    • /
    • 2014
  • In this paper, a brief but essential development strategy for the lunar orbit determination system is discussed to prepare for the future Korea's lunar missions. Prior to the discussion of this preliminary development strategy, technical models of foreign agencies for the lunar orbit determination system, tracking networks to measure the orbit, and collaborative efforts to verify system performance are reviewed in detail with a short summary of their lunar mission history. Covered foreign agencies are European Space Agency, Japan Aerospace Exploration Agency, Indian Space Research Organization and China National Space Administration. Based on the lessons from their experiences, the preliminary development strategy for Korea's future lunar orbit determination system is discussed with regard to the core technical issues of dynamic modeling, numerical integration, measurement modeling, estimation method, measurement system as well as appropriate data formatting for the interoperability among foreign agencies. Although only the preliminary development strategy has been discussed through this work, the proposed strategy will aid the Korean astronautical society while on the development phase of the future Korea's own lunar orbit determination system. Also, it is expected that further detailed system requirements or technical development strategies could be designed or established based on the current discussions.

Orbit Determination of High-Earth-Orbit Satellites by Satellite Laser Ranging

  • Oh, Hyungjik;Park, Eunseo;Lim, Hyung-Chul;Lee, Sang-Ryool;Choi, Jae-Dong;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.271-280
    • /
    • 2017
  • This study presents the application of satellite laser ranging (SLR) to orbit determination (OD) of high-Earth-orbit (HEO) satellites. Two HEO satellites are considered: the Quasi-Zenith Satellite-1 (QZS-1), a Japanese elliptical-inclinedgeosynchronous-orbit (EIGSO) satellite, and the Compass-G1, a Chinese geostationary-orbit (GEO) satellite. One week of normal point (NP) data were collected for each satellite to perform the OD based on the batch least-square process. Five SLR tracking stations successfully obtained 374 NPs for QZS-1 in eight days, whereas only two ground tracking stations could track Compass-G1, yielding 68 NPs in ten days. Two types of station bias estimation and a station data weighting strategy were utilized for the OD of QZS-1. The post-fit root-mean-square (RMS) residuals of the two week-long arcs were 11.98 cm and 10.77 cm when estimating the biases once in an arc (MBIAS). These residuals were decreased significantly to 2.40 cm and 3.60 cm by estimating the biases every pass (PBIAS). Then, the resultant OD precision was evaluated by the orbit overlap method, yielding three-dimensional errors of 55.013 m with MBIAS and 1.962 m with PBIAS for the overlap period of six days. For the OD of Compass-G1, no station weighting strategy was applied, and only MBIAS was utilized due to the lack of NPs. The post-fit RMS residuals of OD were 8.81 cm and 12.00 cm with 49 NPs and 47 NPs, respectively, and the corresponding threedimensional orbit overlap error for four days was 160.564 m. These results indicate that the amount of SLR tracking data is critical for obtaining precise OD of HEO satellites using SLR because additional parameters, such as station bias, are available for estimation with sufficient tracking data. Furthermore, the stand-alone SLR-based orbit solution is consistently attainable for HEO satellites if a target satellite is continuously trackable for a specific period.

Illumination Variations in Near-Equatorial Orbit Imaging: A Case Study with Simulated Data of RAZAKSAT

  • Hassan, Aida-Hayati-Mohd;Hashim, Mazlan;Arshad, Ahmad-Sabirin
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1052-1054
    • /
    • 2003
  • RAZAKSAT is a second micro-satellite mission by Malaysian Satellite Program and is expected for launch in June 2004. Designed to orbit the earth at low-equatorial orbit, RAZAKSAT will meet Malaysia’s immediate needs to rapid data acquisition (real time and more repetitions) to address many operational issues of remote sensing applications, which require availability of current data sets. RAZAKSAT will be among the first remote sensing satellite to orbit the earth at low inclination along the equator, 9$^{\circ}$ with 685km altitude, hence, allows optimal geographical information and environment change within equatorial region be observed with a unique revisit characteristics. The satellite primary payload is MAC, a push-broom type camera with 2.5m of ground sampling distance (GSD) in panchromatic band and 5m of GSD in four multi-spectral bands. This paper describes on the variation of illumination anticipated from simulated RAZAKSAT image, examine its implication to its ground leaving radiances for major applications.

  • PDF