• 제목/요약/키워드: On-orbit

검색결과 1,486건 처리시간 0.025초

Geostationary Satellite Station Keeping Robustness to Loss of Ground Control

  • Woo, Hyung Je;Buckwalter, Bjorn
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권1호
    • /
    • pp.65-82
    • /
    • 2021
  • For the vast majority of geostationary satellites currently in orbit, station keeping activities including orbit determination and maneuver planning and execution are ground-directed and dependent on the availability of ground-based satellite control personnel and facilities. However, a requirement linked to satellite autonomy and survivability in cases of interrupted ground support is often one of the stipulated provisions on the satellite platform design. It is especially important for a geostationary military-purposed satellite to remain within its designated orbital window, in order to provide reliable uninterrupted telecommunications services, in the absence of ground-based resources due to warfare or other disasters. In this paper we investigate factors affecting the robustness of a geostationary satellite's orbit in terms of the maximum duration the satellite's station keeping window can be maintained without ground intervention. By comparing simulations of orbit evolution, given different initial conditions and operations strategies, a variation of parameters study has been performed and we have analyzed which factors the duration is most sensitive to. This also provides valuable insights into which factors may be worth controlling by a military or civilian geostationary satellite operator. Our simulations show that the most beneficial factor for maximizing the time a satellite will remain in the station keeping window is the operational practice of pre-emptively loading East-West station keeping maneuvers for automatic execution on board the satellite should ground control capability be lost. The second most beneficial factor is using short station keeping maneuver cycle durations.

Precise Orbit Determination of GRACE-A Satellite with Kinematic GPS PPP

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Yoo, Sung-Moon;Jo, Jung-Hyun;Lee, Sang-Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제1권1호
    • /
    • pp.59-64
    • /
    • 2012
  • Precise Point Positioning (PPP) has been widely used in navigation and orbit determination applications as we can obtain precise Global Positioning System (GPS) satellite orbit and clock products. Kinematic PPP, which is based on the GPS measurements only from the spaceborne GPS receiver, has some advantages for a simple precise orbit determination (POD). In this study, we developed kinematic PPP technique to estimate the orbits of GRACE-A satellite. The comparison of the mean position between the JPL's orbit product and our results showed the orbit differences 0.18 cm, 0.54 cm, and 0.98 cm in the Radial, in Along-track, and Cross-track direction respectively. In addition, we obtained the root mean square (rms) values of 4.06 cm, 3.90 cm, and 3.23 cm in the satellite coordinate components relative to the known coordinates.

Star Visibility Analysis for a Low Earth Orbit Satellite

  • Yim, Jo-Ryeong;Lee, Seon-Ho;Yong, Ki-Lyuk
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.28.2-28.2
    • /
    • 2008
  • Recently, star sensors have been successfully used as main attitude sensors for attitude control in many satellites. This research presents the star visibility analysis for star trackers and the goal of this analysis is to make sure that the star tracker implementation is suitable to the mission profile and scenario and satisfies the requirement of attitude orbit control system. As a main optical attitude sensor imaging stars, accomodations of a star tracker should be optimized in order to improve the probability of the usage by avoiding the blinding (the unavailability) by the Sun and the Earth. For the analysis, a statistical approach and a time simulation approach are used. The statistical approach is based on the generation of numerous cases, to derive relevant statistics about Earth and Sun proximity probabilites for different lines of sight. The time simulation approach is performed for one orbit to check the statistical result and to refine the statistical result and accomodations of star trackers. In order to perform simulations first of all, an orbit and specific mission profiles of a satellite are set, next the earth proximity probability and the sun proximity probability are calculated by considering the attitude maneuvers and the geometry of the orbit, and then finally the unavailability positions are estimated. As a result, the optimized accomodations of two star trackers are suggested for the low earth orbit satellite.

  • PDF

Burn Delay Analysis of the Lunar Orbit Insertion for Korea Pathfinder Lunar Orbiter

  • Bae, Jonghee;Song, Young-Joo;Kim, Young-Rok;Kim, Bangyeop
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권4호
    • /
    • pp.281-288
    • /
    • 2017
  • The first Korea lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO), has been in development since 2016. After launch, the KPLO will execute several maneuvers to enter into the lunar mission orbit, and will then perform lunar science missions for one year. Among these maneuvers, the lunar orbit insertion (LOI) is the most critical maneuver because the KPLO will experience an extreme velocity change in the presence of the Moon's gravitational pull. However, the lunar orbiter may have a delayed LOI burn during operation due to hardware limitations and telemetry delays. This delayed burn could occur in different captured lunar orbits; in the worst case, the KPLO could fly away from the Moon. Therefore, in this study, the burn delay for the first LOI maneuver is analyzed to successfully enter the desired lunar orbit. Numerical simulations are performed to evaluate the difference between the desired and delayed lunar orbits due to a burn delay in the LOI maneuver. Based on this analysis, critical factors in the LOI maneuver, the periselene altitude and orbit period, are significantly changed and an additional delta-V in the second LOI maneuver is required as the delay burn interval increases to 10 min from the planned maneuver epoch.

항력에 의한 속도 손실 및 궤도 수명 예측 (Velocity Loss Due to Atmospheric Drag and Orbit Lifetime Estimation)

  • 박창수;조상범;노웅래
    • 항공우주기술
    • /
    • 제5권2호
    • /
    • pp.205-212
    • /
    • 2006
  • 고도 800km 이내의 저궤도 위성에 가장 큰 영향을 주는 요소는 지구 대기 항력이다. 지구 저궤도의 대기 밀도는 해수면의 대기 밀도에 비하여 매우 낮지만 항력에 의한 영향이 매 주기 마다 누적되면서 근지점에서 속도가 점진적으로 줄어든다. 근지점에서의 속도 감소는 곧바로 원지점의 고도 감소를 가져오게 되고 이심률이 작아지면서 최종적으로 원궤도로 바뀌게 된다. 본 논문에서는 이러한 대기 항력 및 수명 계산 방법에 대하여 기술하였다. 또한 항력의 크기를 결정하는 대기 밀도에 관해서 알아보고 KSLV-I에 사용될 킥모터와 위성의 수명을 Satellite Tool Kit 프로그램으로 계산하였다.

  • PDF

Precision orbit determination with SLR observations considering range bias estimation

  • Kim, Young-Rok;Park, Sang-Young;Park, Eun-Seo;Park, Jong-Uk;Jo, Jung-Hyun;Park, Jang-Hyun
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2010년도 한국우주과학회보 제19권1호
    • /
    • pp.27.5-28
    • /
    • 2010
  • The unexpected observation condition or insufficient measurement modeling can lead to uncertain measurement errors. The uncertain measurement error of orbit determination problem typically consists of noise, bias and drift. It must be removed by using a proper estimation process for better orbit accuracy. The estimation of noise and drift is not easy because of their random or unpredictable variation. On the other hand, bias is a constant difference between the mean of the measured values and the true value, so it can be simply removed. In this study, precision orbit determination with SLR observations considering range bias estimation is presented. The Yonsei Laser-ranging Precision Orbit Determination System (YLPODS) and SLR NP (Normal Point) observations of CHAMP satellite are used for this work. The SLR residual test is performed to estimate the range bias of each arc. The result shows that we can get better orbit accuracy through range bias estimation.

  • PDF

Performance Analysis of Real-time Orbit Determination and Prediction for Navigation Message of Regional Navigation Satellite System

  • Jaeuk Park;Bu-Gyeom Kim;Changdon Kee;Donguk Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권2호
    • /
    • pp.167-176
    • /
    • 2023
  • This study presents the performance analysis of real-time orbit determination and prediction for navigation message generation of Regional Navigation Satellite System (RNSS). Since the accuracy of ephemeris and clock correction in navigation message affects the positioning accuracy of the user, it is essential to construct a ground segment that can generate this information precisely when designing a new navigation satellite system. Based on a real-time architecture by an extended Kalman filter, we simulated orbit determination and prediction of RNSS satellites in order to assess the accuracy of orbit and clock prediction and signal-in-space ranging errors (SISRE). As a result of the simulation, the orbit and clock accuracy was at 0.5 m and 2 m levels for 24 hour determination and six hour prediction after the determination, respectively. From the prediction result, we verified that the SISRE of RNSS for six hour prediction was at a 1 m level.

Energy Balance and Power Performance Analysis for Satellite in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권3호
    • /
    • pp.253-262
    • /
    • 2010
  • The electrical power system (EPS) of Korean satellites in low-earth-orbit is designed to achieve energy balance based on a one-orbit mission scenario. This means that the battery has to be fully charged at the end of a one-orbit mission. To provide the maximum solar array (SA) power generation, the peak power tracking (PPT) method has been developed for a spacecraft power system. The PPT is operated by a software algorithm, which tracks the peak power of the SA and ensures the battery is fully charged in one orbit. The EPS should be designed to avoid the stress of electronics in order to handle the main bus power from the SA power. This paper summarizes the results of energy balance to achieve optimal power sizing and the actual trend analysis of EPS performance in orbit. It describes the results of required power for the satellite operation in the worst power conditions at the end-of-life, the methods and input data used in the energy balance, and the case study of energy balance analyses for the normal operation in orbit. Both 10:35 AM and 10:50 AM crossing times are considered, so the power performance in each case is analyzed with the satellite roll maneuver according to the payload operation concept. In addition, the data transmission to the Korea Ground Station during eclipse is investigated at the local-time-ascending-node of 11:00 AM to assess the greatest battery depth-of-discharge in normal operation.

홀 추력기를 이용한 두바이셋-2 위성의 궤도변화 분석 (Orbit Evolution Analysis of DubaiSat-2 using Hall-effect Thruster)

  • 김은혁;김연호;박종수;고동욱;정연황;이현우
    • 한국항공우주학회지
    • /
    • 제43권4호
    • /
    • pp.377-386
    • /
    • 2015
  • 본 논문에서는 국내에서 개발된 인공위성 중 최초로 홀 추력기(Hall-effect Thruster)를 탑재한 두바이셋-2(DubiaSat-2)호의 궤도를 분석하여 홀 추력기의 성능을 검증하였다. 두바이셋-2호가 발사된 2013년 11월 21일(UTC) 이후 8개월간의 초기 궤도 운용을 위한 준비 및 수행 결과들에 대해 중점을 두었으며, 임무 수행 기간 중 태양활동이 궤도 변화에 미치는 영향력을 함께 분석하였다. 특히, 증가한 추력에 따른 실제 궤도 변화와 예측된 궤도를 비교하여 분석한 결과 홀 추력기는 지상 실험 결과와 유사한 11 mN 추력을 발생하고 있는 것을 확인하였다. 본 논문에서 정리된 내용은 추후 홀 추력기를 탑재한 인공위성의 초기 및 정상 임무기간 동안 궤도 운용 시 안정성과 효율성을 높이는데 주요 참고자료가 될 것으로 판단된다.

Mission Orbit Design of CubeSat Impactor Measuring Lunar Local Magnetic Field

  • Lee, Jeong-Ah;Park, Sang-Young;Kim, Youngkwang;Bae, Jonghee;Lee, Donghun;Ju, Gwanghyeok
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권2호
    • /
    • pp.127-138
    • /
    • 2017
  • The current study designs the mission orbit of the lunar CubeSat spacecraft to measure the lunar local magnetic anomaly. To perform this mission, the CubeSat will impact the lunar surface over the Reiner Gamma swirl on the Moon. Orbit analyses are conducted comprising ${\Delta}V$ and error propagation analysis for the CubeSat mission orbit. First, three possible orbit scenarios are presented in terms of the CubeSat's impacting trajectories. For each scenario, it is important to achieve mission objectives with a minimum ${\Delta}V$ since the CubeSat is limited in size and cost. Therefore, the ${\Delta}V$ needed for the CubeSat to maneuver from the initial orbit toward the impacting trajectory is analyzed for each orbit scenario. In addition, error propagation analysis is performed for each scenario to evaluate how initial errors, such as position error, velocity error, and maneuver error, that occur when the CubeSat is separated from the lunar orbiter, eventually affect the final impact position. As a result, the current study adopts a CubeSat release from the circular orbit at 100 km altitude and an impact slope of $15^{\circ}$, among the possible impacting scenarios. For this scenario, the required ${\Delta}V$ is calculated as the result of the ${\Delta}V$ analysis. It can be used to practically make an estimate of this specific mission's fuel budget. In addition, the current study suggests error constraints for ${\Delta}V$ for the mission.