• Title/Summary/Keyword: On-line Shift Function

Search Result 24, Processing Time 0.021 seconds

Induction of apoptosis by etoposide treatment in colon cancer cell line SNU C2A (대장암 세포주 SNU C2A에서 etoposide 처리에 의한 apoptosis 유도)

  • Jung, Ji-Yeon;Na, Yun-sook;Jung, Ho-Chul;Oh, Sang-Jin
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.221-229
    • /
    • 2001
  • Background: Inactivation of tumor suppressor genes is believed to be important in the development of many human malignancies. Recently, several lines of evidence have indicated that the wild type p53 gene located at 17p13.3, may function as a tumor suppressor gene and that a mutant p53 gene could promote transformation by inactivating normal p53 function in a dominant negative fashion. These broad spectrum of p53 mutation in human cancers provide that mutant p53 and their protein may be potential targets of tumor diagnostic and therapeutic interventions. Method: Colony formation was performed to investigate growth suppressional ability. p53 expression pattern was examined by western blot and p53-mediated transactivation ability was assessed by CAT activity. SNU C2A cells were observed in apoptotic aspects induced by etoposide and $H_2O_2$ treatment, detecting sensitivity on agent, DNA fragmentation through agarose gel, chromatin condensation by fluorescence microscope, and cell cycle distribution by FACS. Result: 1) p53 mutant his179arg ($histidine{\rightarrow}arginine$) detected in SNU C2A cells lost transcriptional activity and growth suppression ability, showing dominant negative effect on its wild type p53. 2) Etoposide-treated SNU C2A cells induced apoptosis, exhibiting dramatic reduction of cell growth, DNA fragmentation, nuclear condensation formation of apoptotic body and increment of sub-G1 cell fraction. 3) Etoposide and $H_2O_2$-treated SNU C2A cells have no high increase of p53 expression and overexpressed p53 protein changed localization, from cytoplasm to nucleus. Also, p53-mediated transcriptional activity was increased by agents-treatment. Conclusion: SNU C2A cells coexpress wild-type and mutant p53 protein induced apoptosis in the condition on DNA damage, through localizational shift from cytoplasm to nucleus of p53 protein rather than the induction of p53 protein. SNU C2A cells derived mutant p53 his179arg abrogated both the growth supression ability and transactivational activity, showing inhibition effect on transcriptional activity of wild type p53, but did not repress the activity of wild type p53 in SNU C2A cells owing to dominant activity of wild type. These cell condition may provide new gene therapeutic implications leading effective antiproliferation of cell when mutant and wild-type p53 protein were co-expressed in cell.

  • PDF

Monte Carlo Calculation on the Dose Modulation Using Dynamic Magnetic Fields for 10 MV X-rays (움직이는 자기장을 이용한 10 MV X-선의 선량변조에 관한 몬테칼로 계산)

  • Kim, Ki Hwan;Oh, Young Kee;Shin, Kyo Chul;Kim, Jhin Kee;Jeong, Dong Hyeok;Kim, Jeung Kee;Cho, Moon June;Kim, Sun Young
    • Progress in Medical Physics
    • /
    • v.18 no.4
    • /
    • pp.221-225
    • /
    • 2007
  • Monte Carlo calculations were performed to demonstrate the dose modulation with dynamic magnetic fields in phantom. The goal of this study is to obtain the uniform dose distributions at a depth region as a target on the central axis of photon beam under moving transverse magnetic field. We have calculated the depth dose curves for two cases of moving magnetic field along a depth line, constant speed and optimal speed. We introduced step-by-step shift and time factor of the position of the electromagnet as an approximations of continuous moving. The optimal time factors as a function of magnetic field position were calculated by least square methods using depth dose data for static magnetic field. We have verified that the flat depth dose is produced by varying the speed of magnetic field as a function of position as a results of Monte Carlo calculations. For 3 T magnetic field, the dose enhancement was 10.1% in comparison to without magnetic field at the center of the target.

  • PDF

Implementation of a Predictor for Cell Phase Monitoring at the OLT in the ATM-PON (ATM-PON의 OLT에서 상향 셀 위상감시를 위한 예측기의 구현)

  • Mun, Sang-Cheol;Chung, Hae;Kim, Woon-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2C
    • /
    • pp.160-169
    • /
    • 2002
  • An ATM-PON (Passive Optical Network) system consists of an OLT (Optical Line Termination), multiple ONUs (Optical Network Units) and the optical fiber which has a PON (Passive Optical Network)configuration with a passive optical splitter. To avoid cell collisions on the upstream transmission, an elaborate procedure called as ranging is needed when a new ONU is installed. The ONU can send upstream cells according to the grant provided by the OLT after the procedure. To prevent collisions being generated by the variation of several factors, OLT must performs continuously the cell phase monitoring. It means that the OLT predicts the expected arrival time, monitors the actual arrival time for all upstream cells and calculates the error between the times. Accordingly, TC (Transmission Convergence) chip in the OLT needs a predictor which predicts the time that the cell will arrive for the current grant. In this paper, we implement the predictor by using shift registers of which the length is equivalent to the equalized round trip delay. As each register consists of 8 bit, OLT can identify which ONU sends what type of cell (ranging cell, user cell, idle cell, and mini-slot). Also, TC chip is designed to calculate the effective bandwidth for all ONUs by using the function of predictor. With the time simulation and the measurement of an implemented optical board, we verify the operation of the predictor.

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF