• Title/Summary/Keyword: On-coil temperature

Search Result 399, Processing Time 0.036 seconds

A Study on the Electrical and Heat Generation Characteristics of an Induction Motor under Restrained Operation (유도전동기의 구속운전에 따른 전기 및 발열 특성 연구)

  • Jong-Chan Lee;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.1
    • /
    • pp.25-33
    • /
    • 2023
  • In this study, we determined the failure rate and fire status of electric motors widely used in domestic and industrial devices and analyzed the associated fire risks by identifying the electrical and temperature characteristics of electric motors under the normal and restrained operation modes in industrial sites and laboratories. A 2.2kW motor used for driving a conveyor during the vulcanization process in a rubber product manufacturing plant was employed as the study object and was exposed to a high- temperature environment as this motor is widely used in industrial sites. The current amplitude was 4.45-4.50 A during normal operation and 38.2-41.5 A during restrained operation due to the pinching of products and semi-finished products (i.e., 8.5 times higher than that during normal operation). The leakage current amplitude was 0.33 mA during both operation modes. The temperature of the workplace in summer was 42.38℃, indicating a poor environment for the installed motor. In the laboratory, the current and temperature of the coil inside a 3.7kW motor were measured under the restrained operation mode as performing measurements of the coil inside the motor in industrial sites is challenging. The current amplitude during normal operation was 3.5 A, whereas that during restrained operation for 30 s was 51.7-58.6 A, which is 14.8-16.7 times higher than that of normal operation. Moreover, the temperature of the motor coil increased from 22.9℃ to 101℃. Based on the experimental data, we derived the temperature increase formula according to the restrained operation time by performing a regression analysis and verified the time at which the temperature exceeded the stipulated limit for the insulation grade. The findings presented in this paper can be utilized to establish fire-prevention measures and perform safety management of motors of the same type or with a similar capacity.

A Simple a.c. Magnetic Susceptometer Using self-inductance Measurement of a Single Coil Mounted on a Cryostat Cold Head

  • Dho, Joong-Hoe
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.177-181
    • /
    • 2008
  • A very simple a.c. magnetic susceptometer for use in a helium closed cycle cryostat is reported in this paper. This simple setup has only a single bobbin-less copper coil, instead of the primary coil and two secondary coils typically used in mutual-inductance types. The single bobbin-less copper coil is directly mounted on the cryostat cold head. A sample is attached on the inside wall of the copper coil using a thermal contact material and its a.c. magnetic susceptibility is obtained from the measurement of the self-inductance of the sample coil using an LCR meter or an impedance analyzer. Experimental details are described and illustrative measurements on magnetic and superconducting materials as a function of temperature are included. The performances and limitations of this simple a.c. magnetic suceptometer are also discussed.

Calculation of Joule Heat and Temperature Distribution Generated on the Superconduction Magnet Structure for the KSTAR Operation Scenarios (KSTAR 운전시나리오에 대해 초전도자석 구조물에 발생되는 줄열 및 온도분포 계산)

  • Seungyon Cho;Jeong Woo Sa;Chang Ho Choi;KSTAR Team
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.56-59
    • /
    • 2002
  • Since the KSTAR magnet structure should be maintained at cryogenic temperature of about 4.5 K, even a small amount of heat might be a major cause of the temperature rising of the superconducting magnet structure. The Joule heating by eddy current induced on the magnet structure during the KSTAR operation was found to be a critical parameter for designing the cooling scheme of the magnet structure as well as defining the requirements of the refrigerator for the cryogenic system. Based on the Joule heating calculation, it was revealed that the bulk temperature rising of the magnet coil structure was less than 1 K. The local maximum temperature especially at the inboard leg of the TF coil structure increase as high as about 21 K for the plasma vertical disruption scenario. For the CS coil structure maximum temperature of 8.4 K was obtained from PF fast discharging scenario.

  • PDF

Analysis of Temperature Rise on the Air-Guide's Position of Wind Power Generator (풍력발전기 Air Guide 위치별 온도상승 해석)

  • Han, Chang-Woo;Kim, Hyun-Jae;Kweon, Ki-Yeoung;Lee, Hahk-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.282-285
    • /
    • 2008
  • In this paper, the numerical analysis of the model without air-guide was carried out in wind power generator. From numerical results, the temperature rise was not satisfied for the class F insulation and the non-uniformity of temperature distribution was a wide difference in heating elements. To improve these problems, the air-guide was installed in front of the coil head of non-drive end(NDE). The short distance between coil head and air-guide was more effective than long distance in cooling performance. Compared to that of the preliminary design, it was found that the cooling performance of the modification design was improved about 12%.

  • PDF

Design of Field Coil for High Temperature Superconducting motor considering Operating Current (운전전류를 고려한 고온초전도 모터용 계자코일의 설계)

  • 조영식;서무교;백승규;김석환;손명환;권영길;홍정표
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.315-317
    • /
    • 2002
  • The value of I$_{c}$(critical current) in HTS (High Temperature Superconducting) tape has a great influence on B(equation omitted) (magnetic field amplitude applied perpendicular to the tape surface). Therefore, I$_{c}$ of HTS magnet is determined by not only operating temperature but also the B(equation omitted). In shape design of field coil for the HTS motor, a method to reduce the B(equation omitted) and to determine operating current should be considered in order to optimal design. On the basis of the magnetic field analysis, this paper deals with various field coil shape to obtain operating current of HTS motor by using analytical method. And also this paper discusses the operating current of 100hp class HTS motor by using I$_{c}$-B(equation omitted) curve.curve.

  • PDF

An Ultra Low-noise Radio Frequency Amplifier Based on a DC SQUID

  • Muck, Michael;Ande, Marc-Olivier;Kinion, Darin;Clarke, John
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • We have developed an extremely sensitive radio frequency amplifier based on the dc superconducting quantum interference device (dc SQUID). Unlike a conventional semiconductor amplifier, a SQUID can be cooled to ultra-low temperatures (100 mK or less) and thus potentially achieve a much lower noise temperature. In a conventional SQUID amplifier, where the integrated input coil is operated as a lumped element, parasitic capacitance between the coil and the SQUID washer limits the frequency up to which a substantial gain can be achieved to a few hundred MHz. This problem can be circumvented. by operating the input coil of the SQUID as a microstrip resonator: instead of connecting the input signal between the two ends of the coil, it is connected between the SQUID washer and one end of the coil; the other end is left open. Such amplifiers have gains of 15 dB or more at frequencies up to 3 GHz. If required, the resonant frequency of the microstrip can be tuned by means of a varactor diode connected across the otherwise open end of the resonator. The noise temperature of microstrip SQUID amplifiers was measured to be between 0.5 K $\pm$ 0.3 K at a frequency of 80 MHz and 1.5 K $\pm$: 1.2 K at 1.7 GHz, when the SQUID was cooled to 4.2 K. An even lower noise temperature can be achieved by cooling the SQUID to about 0.4 K. In this case, a noise temperature of 100 mK $\pm$ 20 mK was achieved at 90 MHz, and of about 120 $\pm$ 100 mK at 440 MHz.

  • PDF

Dielectric Insulation Properties of Double Pancake Coil Type HTS Transformer (Double Pancake Coil형 고온초전도 변압기의 전기적 절연 특성)

  • 백승명;정종만;이현수;한철수;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • High temperature superconductor can only be applied against an engineering specofication that has to be determined for each particular application form the design requirements for economic viability and for operation margins in service. However, in order to realize the HTS transformer, it is necessary to establish the high voltage insulation technique in cryogenic temperature. Therefore, the composite insulation of double pancake coil type transformer are described and AC breakdown voltage characteristics of liquid nitrogen(LN$_2$) under HTS pancake coil electrode made by Bi-2223/Ag are studied. The Breakdown of LN$_2$ is dominated electrode shape and distance. The influence of pressure on breakdown voltage is discussed with th different electrode. For the electrical insulation design of turn-to-turn insulation for the HTS transformer, we tested breakdown strength of insulation sheet under varying pressure. And we investigated surface flashover properties of LN$_2$ and complex conition of cryogenic gaseous nitrogen(CGN$_2$) obove a LN$_2$ surface. The surface voltage of GFRP was measured as a function of thickness and electrode distance in LN$_2$ and complex condition of CGN$_2$ above a LN$_2$ surface. this research presented information of electrical insulation design for double pancake coil(DPC) type HTS transformer.

Analysis of Induction Heating by Using FEM (유한요소법을 이용한 유도가열 해석)

  • 윤진오;양영수
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.66-68
    • /
    • 2004
  • Induction heating is a process that is accompanied with magnetic and thermal situation. When the high-frequency current flows in the coil, induced eddy current generates heat to conductor. To simulate an induction heating process, the finite element analysis program was developed. A coupling method between the magnetic and thermal routines was developed. In the process of magnetic analysis and thermal analysis, magnetic material properties and thermal material properties depending on temperature are taken into consideration. In this paper, to predict the angular deformation, temperature difference and the shape of heat affected zone were discussed. Also appropriate coil shape for maximum angular deformation were proposed.

  • PDF

A Study of PBD and BD Voltage Characteristics in the Simulate Electrode System of Solenoid Type High Temperature Superconducting Coils (솔레노이드형 고온초전도코일 모의전극계에서 부분 및 완전파괴전압특성 연구)

  • 석복렬
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.94-98
    • /
    • 2002
  • The Partial breakdown (PBD) and complete breakdown (BD) voltage characteristics in a composite insulation system of glass fiber reinforced plastics (GFRP) and liquid nitrogen are investigated to find the PBB and BD characteristics in solenoid type high temperature superconducting (HTS) coils at quench. The electrode system used is made from a coaxial spiral coil-to-cylindrical electrode with an insulation barrier and spacers, and is immersed in liquid nitrogen. A heater is mounted inside the coil electrode to generate boiling which occurs on quenched superconducting coils. The experimental results show that: (1) breakdown voltages are affected severely by the risetime of the applied voltage and the PBD inception voltage, (2) two kinds of BD mechanisms are found depending on the shape of the spacer, length of cooling channel and heater power.

Quench Characteristics of Field Winding in a superconducting Generator Using 2-Dimensional Analysis (2차원 해석을 이용한 초전도 발전기 계자 코일의 퀜치 특성)

  • 강준선;나완수;최세용;권영길;손명환;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.177-179
    • /
    • 2000
  • In this paper, we analyzed quench characteristics of field windings using 2 dimensional analysis. The quench origin was assumed to take place at the inner most point in the mid-plane of the coil. The temperature distribution was numerically calculated on the coil cross section using FDM analysis, and was used to estimate the normal zone resistance of the coil. Finally, we obtained voltage current characteristics of the quenched winding coils.

  • PDF