• Title/Summary/Keyword: On-chip

Search Result 4,670, Processing Time 0.03 seconds

The Prediction of Chip Flow Angle on chip Breaker Shape Parameters (칩브레이커 형상변수에 의한 칩유동각 예측)

  • 박승근
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.96-101
    • /
    • 2000
  • In machining with cutting tool inserts having complex chip groove shape the flow curl and breaking pattern of the chip are different than in flat-face inserts. In the present work an effort is made to understand the three basic phe-nomena occurring in a chip since its formation in machining with groove type and pattern type inserts. These are the ini-tial chip flow the subsequent development of up and side curl and the final chip breaking due to the development of tor-sional and bending stresses. in this paper chip flow angle in a groove type and pattern type inserts. The expres-sion for chip flow angle in groove type and pattern type inserts is also verified experimentally using high speed filming techniques.

  • PDF

The Prediction of Chip Flow Angle on Chip Breaker Shape Parameters (칩브레이커 형상변수에 의한 칩유동각 예측)

  • 박승근
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.381-386
    • /
    • 1999
  • In machining with cutting tool inserts having complex chip groove shape, the flow, curl and breaking patterns of the chip are different than in flat-face type inserts. In the present work, an effort is made to understand the three basic phenomena occurring in a chip since its formation in machining with groove type and pattern type inserts. These are the initial chip flow, the subsequent development of up and side curl and the final chip breaking due to the development of torsional and banding stresses. In this paper, chip flow angle in a groove type and pattern type inserts. The expression for chip flow angle in groove type and pattern type insets is also verified experimentally using high speed filming techniques.

  • PDF

Application of Taguchi Method for the Selection of Chip Breaker (칩브레이크 선정을 위한 Taguchi 방법의 적용)

  • 전준용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.118-125
    • /
    • 1998
  • Chip control is a major problem in automatic machining process, especially in finish turning operation. In this case, chip breaker is one of the important factors to be determined. As unbroken chips are grown. these deteriorate the surface roughness. and proces automation can not be carried out. In this study to get rid of chip curling problem while turning internal hole. optimal chip breaker is selected from the experiment. The experiment is planned with Taguchi's method that is based on the orthogonal arrary of design factors. From the response table. cutting speed, feedrate, depth of cut and tool geometry turn to be major factors affecting chip formation. Then, optimal chip breaker is selected. and this is verified as good enough for chip control from the experiment.

  • PDF

A Study on Transient Chip Formation in Cutting with Self-Propelled Rotary Tools-Experimental Verification (자기추진 로타리 공구를 사용한 절삭에서 천이칩 형성에 관한 연구 - 실험에 의한 증명)

  • 최기흥;최기상;김정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1910-1920
    • /
    • 1993
  • An experimental study to investigate the unconventional chip formation called triangulation of chip in cutting with a SPRT (self-propelled rotary tool) is performed using acoustic emission (AE) signal analysis. In doing that, a quantitative model of the AE RMS signal in triangulation with a SPRT is first developed. The predicted results from this model show good correlation between the AE RMS signal and the general characteristics of triangular chip formation. Then, effects of various process parameters such as cutting conditions (cutting speed, depth of cut, oblique angle and normal rake angle) and the work material properties on the chip formation in cutting with a SPRT are explored. Special attention is paid to the work material properties which are found to have significant effects on triangulation.

Effect of Geometrical Similarity between Twist Drill on the Shape of Chip Produced (드릴의 기하학적 상사성이 칩형상에 미치는 영향)

  • 최만성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.513-518
    • /
    • 1999
  • In this study, geometrical similarity conditions for drills of various diameters are discussed. The effect of geometrical similarity on the chip shape and forces of different sized conventional drills has been experimentally confirmed. Drilling tests are carried out for SM45C by using the conventional HSS drills. The torque and thrust forces are measured and compared with those chip forms. Chip shape in drilling are affected by three factors being flow angle, side and up curl of the chip. It is found that the feedrate and drill diameter are more affected than cutting speed on the chip form and cutting forces. The similarity conditions gives easily to estimate the chip shape, the thrust and the torque for drills of different diameters.

  • PDF

Effect of Geometrical Similarity between Twist Drill on the Shape of Chip Produced. (드릴구멍 상사성이 칩형상에 미치는 영향)

  • 최만성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.118-126
    • /
    • 2000
  • In this study, geometrical similarity conditions for drills of various diameters are discussed. The effect of geometrical similarity on the chip shape and forces of different sized conventional drills has been experimentally confirmed. Drilling tests are carried out for SM45C by using the conventional HSS drills. The torque and thrust forces are measured and compared with those chip forms. Chip shape in drilling are affected by three factors being flow angle, side and up curl of the chip. It is found that the feedrate and drill diameter are more affected than cutting speed on the chip form and cutting forces. The similarity conditions gives easily to estimate the chip shape, the thrust and the torque for drills of different diameters.

  • PDF

Development of DNA Chip Microarray Using Hydrophobic Template (소수성 Template를 이용한 DNA Chip Microarray의 개발)

  • Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.271-274
    • /
    • 2004
  • Microarray-based DNA chips provide an architecture for multi-analyte sensing. In this paper, we report a new approach for DNA chip microarray fabrication. Multifunctional DNA chip microarray was made by immobilizing many kinds of biomaterials on transducers (particles). DNA chip microarray was prepared by randomly distributing a mixture of the particles on a chip pattern containing thousands of m-scale sites. The particles occupied a different sites from site to site. The particles were arranged on the chip pattern by the random fluidic self-assembly (RFSA) method, using a hydrophobic interaction for assembly.

  • PDF

Fabrication of Biochip by Hydrophobic Interaction (무작위 조립법을 이용한 바이오칩의 제작)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.404-405
    • /
    • 2006
  • Microarray-based DNA chips provide an architecture for multi-analyte sensing. In this paper, we report a new approach for DNA chip microarray fabrication. Multifunctional DNA chip microarray was made by immobilizing many kinds of biomaterials on transducers (particles). DNA chip microarray was prepared by randomly distributing a mixture of the particles on a chip pattern containing thousands of m-scale sites. The particles occupied a different sites from site to site. The particles were arranged on the chip pattern by the random fluidic self-assembly (RFSA) method, using a hydrophobic interaction for assembly.

  • PDF

A Study on the Applications of Finite Element Techniques to Chip Formation and Cutting Heat Generation Mechanism of Cutting Process (CHIP생성 및 절삭열 발생기구 해석을 위한 유한요소법 적용에 관한 연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.148-155
    • /
    • 1995
  • The object of this study is to achieve a gteater understanding of meterial removal process and its mechanism. In this study, some applications of finite element techniques are applied to analyze the chip formation and cutting heat generation mechanism of metal cutting. To know the effect of cutting parameters, simulations employed some independent cutting variables change, such as constitutive deformation laws of workpiece and tool material, frictional coefficients and tool-chip contact interfaces, cutting speed, tool rake angles, depth of cut and this simulations also include large elastic-plastic defor- mation, adiabetic thermal analysis. Under a usual plane strain assumption, quasi-static, thermal-mechanical coupling analysis generate detailed informations about chip formation process and cutting heat generation mechanism Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction force on tool, cutting temperature and thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

An Experimental Study on New Type Chip Brakeer(Part 1) (신形 칩折斷具에 관한 實驗的 硏究 (제1보))

  • 손명환;이호철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1121-1140
    • /
    • 1992
  • In metal cutting the shape of generated chip varies according to cutting conditions, characteristics of workpiece and geometry of cutting tool. The best surface roughness of machined workpiece is obtained when generating flow type contrinuous chip. If the generated chip is not broken, that is not only tangled workpiece and cutting tool, but also may give damage on the machined surface of workpiece or danger for a operator. The flow type continuous chip may bring the low productivity in high speed any heavy cutting, automatic machining process and non-human factory. There are two type of chip break process ; controlling cutting condition and using chip breaker. In present study we carried out the experiment on new type chip breaker compared with conventional type and proved the efficiency of a new type and showed the chip break condition to be applied in actual metal cutting. In the experiment SM 20 C as a workpiece material and WC as a tool material were used and cutting speed of 30-150m/min, feed of 0.071-0.210mm/rev and depth of cut of 1mm were applied as cutting condition. The results of the experiment are as follows : (1) The mechanism of chip curl can be explained more clearly by plastic flow of workpiece material and moment of shearing force. (2) The most effective radius of curled chip and flat distance from cutting edge is 2.0-2.5mm and 1.5mm in both types. (3) The effective inclination angle of chip break surface and side cutting edge angle are 30.deg.- 45.deg. and 20.deg. in conventional type, while the radius of arc surface, lower arc angle A, upper arc angle B and side cutting edge angle are 3mm, 20.deg.- 45.deg., 0.deg.- 45.deg. and 10.deg.- 20.deg. in new type. (4) The probability to be obtained 100% chip breaking ratio is much higher in new type than in conventional type.