• Title/Summary/Keyword: On-Orbit Servicing

Search Result 4, Processing Time 0.019 seconds

Mission Analysis Involving Hall Thruster for On-Orbit Servicing (궤도상 유지보수를 위한 홀추력기 임무해석)

  • Kwon, Kybeom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.791-799
    • /
    • 2020
  • Launched in October 2019, Northrop Grumman's MEV-1 was the world's first unmanned mission demonstrating the practical feasibility of on-orbit servicing. Although the concept of on-orbit servicing was proposed several decades ago, it has been developed to various mission concepts providing services such as orbit change, station keeping, propellant and equipment supply, upgrade, repair, on-orbit assembly and production, and space debris removal. The historical success of MEV-1 is expected to expand the market of on-orbit servicing for government agencies and commercial sectors worldwide. The on-orbit servicing essentially requires the utilization of a highly propellant efficient electric propulsion system due to the nature of the mission. In this study, the space mission analysis for a simple on-orbit mission involving Hall thruster is conducted, which is life extension mission for geostationary orbit satellites. In order to analyze the mission, design space exploration for various Hall thruster design variable combinations is performed. The values of design variables and operational parameters of Hall thruster suitable for the mission are proposed through design space analysis and optimization, and mission performance is derived. In addition, the direction of further improvement for the current on-orbit mission analysis process and space mission analysis involving Hall thruster is reviewed.

Recent Status and Future Prospects on On-Orbit Servicing (궤도상서비싱 개발 동향 및 향후 전망)

  • Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.559-572
    • /
    • 2022
  • Recently, with the success of the world's first On-Orbit service (OOS) mission MEV (Mission Extension Vehicle)-1 in 2020, interest in OOS is increasing at home and abroad. In particular, the mission of OOS and active debris removal (ADR) service, which was difficult to find in the old space era in the past, is expected to enter the new space industry in the near future. Therefore, this paper examines the development cases of domestic and foreign OOS technologies, and describes the characteristics of major technologies required, domestic status and development potential, and the possibility of future OOS mission development. The technology trends and future prospects of OOS described in this paper are expected to be useful reference materials for further researching related fields in domestic situations where related research is insufficient.

Scenario Design for Verification of Rendezvous Docking Technology for Nanosatellite (초소형 위성의 랑데부/도킹 기술 검증을 위한 시나리오 설계)

  • Kim, Kiduck;Kim, Hae-Dong;Cho, Dong-Hyun
    • Journal of Space Technology and Applications
    • /
    • v.2 no.1
    • /
    • pp.30-40
    • /
    • 2022
  • This paper illustrates the trajectory design of drift distance recovery after initial launch and proximity operation when verifying rendezvous/docking technology using nanosatellites. The rendezvous/docking is a technology that is the basis of on-orbit servicing technology and is a preemptive process essential for approaching a target object. In particular, since it is difficult to verify in space, nanosatellites have recently been used to reduce the risk and cost of the development stage. Therefore, this paper not only introduces the configuration and specifications of thrusters for nanosatellites but also designs relative trajectories that can take into account the thrust limitations which come from the small size and low power of nanosatellites. In addition, we intend to be helpful in later designing scenarios according to the improvement of available thruster performance through comparison of trajectories and thrust usage with cases without thrust limitations.

Orbital Transfer Process and Analysis of Small Satellite for Capturing Korean Satellite as Active Debris Removal (ADR) Mission (우리별 위성 포획 임무 수행을 위한 소형위성의 궤도 천이 방법 및 분석)

  • Junchan Lee;Kyungin Kang
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.101-117
    • /
    • 2023
  • Active debris removal, a technology that approaches and removes space debris in orbit, and the on-orbit service, a technology for extending the mission life of satellites by fuel charging or by exchanging the battery, are gaining interest with the growth of the space community. SaTReC plans to develop a satellite capable of capturing and removing Korean satellites orbiting in space after the end of their missions. In contrast to the previously launched satellites by Korea, which were mainly intended to observe Earth and the space environment, rendezvous/docking technologies, as required in the future during, for instance, space exploration missions, will be implemented and demonstrated. In this paper, an orbital transition method for next-generation small satellites that will capture and remove space debris will be introduced. It is assumed that a small satellite with a mass of approximately 200 kg will be injected into the mission orbit through Korea Space Launch Vehicle-II in 2027. Because the satellite must access the target using a minimum amount of fuel, an approaching technology using Earth's J2 perturbation force has been developed. This method is expected to enable space debris removal missions for relatively lightweight satellites and to serve as the basis for carrying out a new type of space exploration in what is termed the 'Newspace' era.