• Title/Summary/Keyword: On-Line Analytical Processing(OLAP)

Search Result 51, Processing Time 0.026 seconds

Building an On-Line Analytical Processing system for Efficient Business Analysis in Enterprise

  • 조기충;서의호;이근수;서창교
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.129-132
    • /
    • 1998
  • 그 동안 기업의 데이터는 관계형 데이터베이스에 의해 관리되어져 왔다. 그러나 전산전문가 아닌 최종사용자가 관리하는데는 어려움이 있었으며 이러한 문제를 해결하기 위한 많은 노력이 계속되어 왔다. 결국 최종사용자가 데이터에 직접 접근하여 분석이 가능한 OLAP 시스템의 도입이 필요하게 되었으며, OLAP시스템은 EUC 환경을 구현할 수 있는 시스템이라고 힐 수 있다. 따라서 본 논문은 효율적인 의사결정을 위해 기존의 관계형 데이터 베이스가 아닌 다차원 데이터 베이스에 의한 Prototype을 구축하였다.

  • PDF

Extending the Multidimensional Data Model to Handle Complex Data

  • Mansmann, Svetlana;Scholl, Marc H.
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.2
    • /
    • pp.125-160
    • /
    • 2007
  • Data Warehousing and OLAP (On-Line Analytical Processing) have turned into the key technology for comprehensive data analysis. Originally developed for the needs of decision support in business, data warehouses have proven to be an adequate solution for a variety of non-business applications and domains, such as government, research, and medicine. Analytical power of the OLAP technology comes from its underlying multidimensional data model, which allows users to see data from different perspectives. However, this model displays a number of deficiencies when applied to non-conventional scenarios and analysis tasks. This paper presents an attempt to systematically summarize various extensions of the original multidimensional data model that have been proposed by researchers and practitioners in the recent years. Presented concepts are arranged into a formal classification consisting of fact types, factual and fact-dimensional relationships, and dimension types, supplied with explanatory examples from real-world usage scenarios. Both the static elements of the model, such as types of fact and dimension hierarchy schemes, and dynamic features, such as support for advanced operators and derived elements. We also propose a semantically rich graphical notation called X-DFM that extends the popular Dimensional Fact Model by refining and modifying the set of constructs as to make it coherent with the formal model. An evaluation of our framework against a set of common modeling requirements summarizes the contribution.

OLAP4R: A Top-K Recommendation System for OLAP Sessions

  • Yuan, Youwei;Chen, Weixin;Han, Guangjie;Jia, Gangyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2963-2978
    • /
    • 2017
  • The Top-K query is currently played a key role in a wide range of road network, decision making and quantitative financial research. In this paper, a Top-K recommendation algorithm is proposed to solve the cold-start problem and a tag generating method is put forward to enhance the semantic understanding of the OLAP session. In addition, a recommendation system for OLAP sessions called "OLAP4R" is designed using collaborative filtering technique aiming at guiding the user to find the ultimate goals by interactive queries. OLAP4R utilizes a mixed system architecture consisting of multiple functional modules, which have a high extension capability to support additional functions. This system structure allows the user to configure multi-dimensional hierarchies and desirable measures to analyze the specific requirement and gives recommendations with forthright responses. Experimental results show that our method has raised 20% recall of the recommendations comparing the traditional collaborative filtering and a visualization tag of the recommended sessions will be provided with modified changes for the user to understand.

An Algorithm for Computing Range-Groupby Queries (영역-그룹화 질의 계산 알고리즘)

  • Lee, Yeong-Gu;Mun, Yang-Se;Hwang, Gyu-Yeong
    • Journal of KIISE:Databases
    • /
    • v.29 no.4
    • /
    • pp.247-261
    • /
    • 2002
  • Aggregation is an important operation that affects the performance of OLAP systems. In this paper we define a new class of aggregation queries, called range-groupby queries, and present a method for processing them. A range-groupby query is defined as a query that, for an arbitrarily specified region of an n-dimensional cube, computes aggregations for each combination of values of the grouping attributes. Range-groupby queries are used very frequently in analyzing information in MOLAP since they allow us to summarize various trends in an arbitrarily specified subregion of the domain space. In MOLAP applications, in order to improve the performance of query processing, a method of maintaining precomputed aggregation results, called the prefix-sum array, is widely used. For the case of range-groupby queries, however, maintaining precomputed aggregation results for each combination of the grouping attributes incurs enormous storage overhead. Here, we propose a fast algorithm that can compute range-groupby queries with minimal storage overhead. Our algorithm maintains only one prefix-sum away and still effectively processes range-groupby queries for all possible combinations of the grouping attributes. Compared with the method that maintains a prefix-sum array for each combination of the grouping attributes in an n-dimensional cube, our algorithm reduces the space overhead by (equation omitted), while accessing a similar number of cells.

Replacement Condition Detection of Railway Point Machines Using Data Cube and SVM (데이터 큐브 모델과 SVM을 이용한 철도 선로전환기의 교체시기 탐지)

  • Choi, Yongju;Oh, Jeeyoung;Park, Daihee;Chung, Yongwha;Kim, Hee-Young
    • Smart Media Journal
    • /
    • v.6 no.2
    • /
    • pp.33-41
    • /
    • 2017
  • Railway point machines act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Since point failure caused by the aging effect can significantly affect railway operations with potentially disastrous consequences, replacement detection of point machine at an appropriate time is critical. In this paper, we propose a replacement condition detection method of point machine in railway condition monitoring systems using electrical current signals, after analyzing and relabeling domestic in-field replacement data by means of OLAP(On-Line Analytical Processing) operations in the multidimensional data cube into "does-not-need-to-be replaced" and "needs-to-be-replaced" data. The system enables extracting suitable feature vectors from the incoming electrical current signals by DWT(Discrete Wavelet Transform) with reduced feature dimensions using PCA(Principal Components Analysis), and employs SVM(Support Vector Machine) for the real-time replacement detection of point machine. Experimental results with in-field replacement data including points anomalies show that the system could detect the replacement conditions of railway point machines with accuracy exceeding 98%.

Abnormal Situation Analysis of Railway Point Machine Using Data Cube and OLAP (Data cube와 OLAP기법을 이용한 철도 선로전환기의 이상상황 분석)

  • Choi, Heesu;Xu, Zhenshun;Lim, Chulhoo;Park, Daihee;Chung, Yongwha;Kim, Heeyoung;Yoon, Sukhan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.558-561
    • /
    • 2016
  • 선로전환기는 분기기에서 철도의 궤도를 변경하는 핵심장치 중 하나로서, 해당 부품의 고장은 열차사고에 직접적인 영향을 미친다. 현재 철도 현장에서는 관리자가 모니터링 시스템을 통해 선로전환기의 장애 및 이상상황을 감시하고 지침서에 따라 관리를 수행한다. 본 논문에서는 실제 현장에서 발생하는 대규모의 선로전환기 이상상황 데이터를 대상으로 빅 데이터 해석학적 입장에서 심층 분석이 가능한 새로운 철도 유지보수 분석 시스템의 프로토타입을 제안한다. 제안하는 시스템은 첫째, 유지관리시스템에 저장된 선로전환기 데이터와 이상상황 데이터를 정규화하고 추출하여 베이스 테이블을 생성한다. 둘째, 베이스 테이블 상의 속성들을 스타 스키마로 설계하여 철도 유지보수 큐브로 구축한다. 마지막으로, 매핑된 철도 유지보수 큐브와 오라클에서 제공하는 AWM을 활용해 다차원적이고 심층적인 OLAP(On-Line Analytical Processing) 분석이 가능하다.

Emerging Data Management Tools and Their Implications for Decision Support

  • Eorm, Sean B.;Novikova, Elena;Yoo, Sangjin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.2 no.2
    • /
    • pp.189-207
    • /
    • 1997
  • Recently, we have witnessed a host of emerging tools in the management support systems (MSS) area including the data warehouse/multidimensinal databases (MDDB), data mining, on-line analytical processing (OLAP), intelligent agents, World Wide Web(WWW) technologies, the Internet, and corporate intranets. These tools are reshaping MSS developments in organizations. This article reviews a set of emerging data management technologies in the knowledge discovery in databases(KDD) process and analyzes their implications for decision support. Furthermore, today's MSS are equipped with a plethora of AI techniques (artifical neural networks, and genetic algorithms, etc) fuzzy sets, modeling by example , geographical information system(GIS), logic modeling, and visual interactive modeling (VIM) , All these developments suggest that we are shifting the corporate decision making paradigm form information-driven decision making in the1980s to knowledge-driven decision making in the 1990s.

  • PDF

SQL Extensions for Handling Spreadsheets and PIVOT tables in OLAP Environment (OLAP 환경에서 스프레드시트와 피벗 테이블을 다루기 위한 SQL의 확장)

  • Shin, Sung-Hyun;Kim, Jin-Ho;Moon, Yang-Sae;Kim, Sang-Wook
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.21-25
    • /
    • 2008
  • 온라인 분석 처리(On-Line Analytical Processing: OLAP)은 데이터 웨어하우스로부터 다차원 데이터를 분석하거나 의사 결정을 위한 유용한 정보를 제공하고 있다. 데이터 분석을 위해, OLAP에서는 다차원 데이터를 표현한 스프레드시트(spreadsheet) 또는 피벗 테이블(PIVOT table)을 널리 사용하고 있다. 스프레드시트와 피벗 테이블은 서로 유사한 형태로써 분석의 기준이 되는 애트리뷰트들이 많은 구조이다. 사용자들은 흔히 사용되고 있는 SQL 구문을 이용하여 스프레드시트 또는 피벗 테이블에서 손쉬운 데이터 분석을 요구한다. 그러나, RDBMS에서 제공하는 SQL 구문의 사용으로, 이는 다차원 데이터를 효과적으로 분석할 수 없다. 그 이유는 SQL 구문이 다양한 데이터 분석의 목적으로 사용되거나, 요약된 집계 정보를 도출하는 데 한계가 있기 때문이다. 따라서, 본 연구에서는 SQL 구문을 확장하여 다차원 데이터를 표현한 스프레드시트를 손쉽게 조작하고, 요약된 집계를 계산하는 셀(cell) 구문을 제안한다. 이 방법은 스프레드시트와 피벗 테이블에서 행과 열이 교차하는 좌표(coordinate)를 이용하여, 특정 셀의 조작 및 선택한 부분/전체 영역에 대한 집계 정보를 계산하는 방법이다. 결과적으로, RDBMS에서 사용되는 SQL 구문이 친숙한 사용자들이 제안한 셀 구문을 이용하면, 다양한 관점에 따라 손쉽게 스프레드시트와 피벗 테이블을 다룰 수 있을 것으로 사료된다.

  • PDF

On the Aggregation of Multi-dimensional Data using Data Cube and MDX

  • Ahn, Jeong-Yong;Kim, Seok-Ki
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • One of the characteristics of both on-line analytical processing(OLAP) applications and decision support systems is to provide aggregated source data. The purpose of this study is to discuss on the aggregation of multi-dimensional data. In this paper, we (1) examine the SQL aggregate functions and the GROUP BY operator, (2) introduce the Data Cube and MDX, (3) present an example for the practical usage of the Data Cube and MDX using sample data.

  • PDF

Sort-Based Distributed Parallel Data Cube Computation Algorithm using MapReduce (맵리듀스를 이용한 정렬 기반의 데이터 큐브 분산 병렬 계산 알고리즘)

  • Lee, Suan;Kim, Jinho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.196-204
    • /
    • 2012
  • Recently, many applications perform OLAP(On-Line Analytical Processing) over a very large volume of data. Multidimensional data cube is regarded as a core tool in OLAP analysis. This paper focuses on the method how to efficiently compute data cubes in parallel by using a popular parallel processing tool, MapReduce. We investigate efficient ways to implement PipeSort algorithm, a well-known data cube computation method, on the MapReduce framework. The PipeSort executes several (descendant) cuboids at the same time as a pipeline by scanning one (ancestor) cuboid once, which have the same sorting order. This paper proposed four ways implementing the pipeline of the PipeSort on the MapReduce framework which runs across 20 servers. Our experiments show that PipeMap-NoReduce algorithm outperforms the rest algorithms for high-dimensional data. On the contrary, Post-Pipe stands out above the others for low-dimensional data.