• 제목/요약/키워드: Omnidirectional Antenna

검색결과 96건 처리시간 0.024초

A Design of a Planar UWB Antenna with Notched WLAN band by Using Slot and Slit (슬롯과 슬릿을 사용하여 무선랜 대역이 제거된 평면형 UWB안테나 설계)

  • Lee, Chang-Joo;Kim, Su-Hoon;Park, Young-Bon;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제49권6호
    • /
    • pp.105-110
    • /
    • 2012
  • In this paper, A planar UWB antenna with notched WLAN band, 802.11a band (5.15 ~ 5.825GHz), by using slot and slit is designed by using CST Microwave Studio. The notched bandwidth can be controlled by the length and width of the slot and slit in the patch and ground plane and it's radiation characteristics are examined through the experiments. The bandwidth based on the -10dB return loss level can be covered the full UWB band (3.1 ~ 10.6GHz) with a notched WLAN band (5.147 ~ 5.83GHz). Also, the experimental radiation pattern is almost omnidirectional in the H-plane.

Design of Ultra Wideband Monopole/Dielectric Resonator Antenna (초광대역 모노폴 유전체 공진기 복합체 안테나 설계)

  • Kim, Jong-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제50권12호
    • /
    • pp.22-29
    • /
    • 2013
  • The combined structure of both an annular dielectric resonator and a quarter-wave monopole is proposed to generate an omnidirectional radiation pattern over the wideband frequency range. The monopole works at the lower frequency band and excites the cylindrical dielectric resonator along its center point by electrical coupling mechanism. The rectangular shape of the DR is cut to generate the wideband operation of 4.7-18.2 GHz. The geometrical parameter of cylindrical dielectric resonator is 5.8 mm, 11.6 mm and 6.0 mm in inner diameter, outer diameter and height, respectively.

Design of the Linked Patch Monopole Antenna and Its SAR Analysis along with Antenna Direction (연결된 패치 형태의 모노폴 안테나 설계 및 안테나 탑재 방향에 따른 SAR 분석)

  • Yang, Joo-Hun;Lee, Seungwoo;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제23권10호
    • /
    • pp.1117-1127
    • /
    • 2012
  • In this paper, the monopole antenna for satisfying GSM900/DCS1800/PCS1900/UMTS2100 services is designed. We can get the characteristic of the low frequency bands by connecting the front patch to the back patch of the antenna and get the low frequency resonance band using a front patch slit. The proposed antenna total volume is $40{\times}98{\times}1.6\;mm^3$, and it is designed on the FR-4 substrate having a relative dielectric constant of 4.4. As measurement result after fabrication, showed that the resonant frequency bandwidths are 156 MHz(828~984 MHz), 708 MHz(1.476~2.184 GHz) based on the return loss of 10 dB, and the radiation patterns show as the omnidirectional shapes for the E-field and H-field. For analyzing the human effects, the proposed antenna is mounted on the mobile-phone case. The averaged peak SAR over 1 g and 10 g is simulated and measured when the input power is 0.25 W. We have checked the variation of the SAR values when the antenna is mounted 4 different directions, then checked the direction having a relatively higher SAR. The results also satisfied the limiting SAR values which are 1.6 W/kg and 2.0 W/kg averaged over 1 g and 10 g tissues respectively.

A Study on the Implementation of Channel Simulator for Mobile Communications (이동통신용 채널시뮬레이터 구현에 관한 연구)

  • Kim, Jae Moung;Lee, Sang Cheon;Park, Han Kyu
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • 제24권3호
    • /
    • pp.370-375
    • /
    • 1987
  • In this study, the Rayleigh fast fading simualtors encountered in channel modelling of mobile radio have been implemented and evaluated. Two models used for the fading environment were frequency composition of phase modulated signals and shaping spectrum of noise sources with filters. The spectrum chosen for our purpose is appropriate to an omnidirectional antenna. From results of the experiment with various parameters, we have obtained satisfying results which are closely agreed to theoretical values.

  • PDF

Design and Fabrication of Dual-Band Planar Monopole Antenna with Defected Ground Structure for WLAN Applications (WLAN 시스템에 적용 가능한 결함 접지 구조를 갖는 이중대역 평면형 모노폴 안테나 설계 및 제작)

  • Kang, Byeong-Nam;Rhee, Seung-Yeop;Jeong, Min-Joo;Choi, Domin;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제29권1호
    • /
    • pp.42-49
    • /
    • 2018
  • In this paper, a dual-band microstrip-fed monopole antenna with a DGS(defected ground structure) for WLAN(wireless local area network) applications is presented. The antenna consists of a monopole and a defected ground, which were etched on both sides of the FR-4 substrate. The defected ground structure was used to obtain the dual band, while the step-by-step reduction in the monopole width was used to improve the impedance matching of the antenna. The antenna has an overall compact size of $44{\times}51{\times}1.6mm^3$, which was optimized by varying the size of the monopole and the ground plane such that it may resonate at the 2.4 GHz and 5 GHz bands of the WLAN. The measurement results showed that the antenna operates in the frequency band of 210 MHz(2.29~2.50 GHz) and 900 MHz(5.05~5.95 GHz) for a VSWR under 2, and showed omnidirectional radiation pattern at all desired frequencies.

Design of Miniaturization Terminal Antenna for 2.4 GHz WiFi Band with MZR (MZR을 이용한 2.4 GHz WiFi 대역 소형 단말기 안테나 설계)

  • Lee, Young-Hun
    • Journal of IKEEE
    • /
    • 제23권1호
    • /
    • pp.14-21
    • /
    • 2019
  • In this paper, we implemented an on-board miniaturization antenna operating 2.4 GHz using MZR(Mu Zero Resonator). It is must be operating under the constraint that the size of the small terminal PCB should be $78{\times}38{\times}0.8mm^3$ and the size of the system should be $63{\times}38{\times}0.8mm^3$ and the size of the radiating part should be $15{\times}38{\times}0.8mm^3$. The feeding structure uses a CPW structure for stable feeding and a feeding point at the upper left of the system board. A magnetic field coupling structure is used for coupling the feeding part and the antenna. The resonance frequency of the MZR is determined by the series inductance and capacitance of the cell, so the gap between the cells, the length of the cell, the length of the interdigital capacitor, and the spacing between the radiation part and the ground plane are analyzed. The antenna was designed and fabricated using the results. The total size of the antenna including the feed structure is $20.8{\times}9.0{\times}0.8mm^3$, and the electrical length is $0.1664{\lambda}_0{\times}0.072{\lambda}_0{\times}0.0064{\lambda}_0$. The measurement result for 10 dB bandwidth, gain and directivity are 440 MHz(18.3%), 0.4405 dB, and 2.722 dB respectively. It is confirmed that the radiation pattern has omnidirectional characteristics and it can be applied to ultra small terminal antenna.

A triple band printed monopole antenna with a bent branch strips for WiFi / 5G (와이파이 및 5G용 굽은 가지 스트립을 가진 삼중대역 인쇄형 모노폴 안테나)

  • Min-Woo Kim;Dong-Gi Shin;Oh-Rim Ryu;Young-Soon Lee
    • Journal of Advanced Navigation Technology
    • /
    • 제25권6호
    • /
    • pp.536-542
    • /
    • 2021
  • In this paper, we proposed a triple band printed monopole antenna with a bent branch strips for WiFi / 5G. An antenna structure in which bent strips for generating multiple resonance are attached in the form of branches was newly proposed based on a typical monopole strip vertically erected as a triple band antenna structure. The proposed antenna is designed on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of 28×40 mm2. The measured impedance bandwidth is 430 MHz (2.22~2.65 GHz) in the 2.4 GHz WLAN, 450 MHz (3.38~3.83 GHz) in the 3.5 GHz and 2390 MHz (4.95~7.34 GHz), In particular, it has been observed that antenna has a stable omnidirectional radiation patterns as well as gain of 1.537 dBi, 1.878 dBi and 2.337 dBi in the entire frequency band of interest.

Studies on Miniaturization and Notched Wi-Fi Bandwidth for UWB Antenna Using a Wide Radiating Slot (넓은 방사 슬롯을 이용한 초광대역 안테나의 소형화와 Wi-Fi 대역의 노치에 관한 연구)

  • Beom, Kyeong-Hwa;Kim, Ki-Chan;Jo, Se-Young;Ko, Young-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제22권2호
    • /
    • pp.265-274
    • /
    • 2011
  • In this paper, it is studied on wide radiating slot antenna's miniaturization for ultra wide-band(UWB) technologies and notch structure to prevent interference between UWB systems and existing wireless systems for using Wi-Fi service of IEEE standards 802.11 a/n. Proposed antenna that wide slot is decreased from $\lambda/2$ to $\lambda/4$ length of resonant frequency has decreased by 72 % compared with conventional antenna. And optimized T-shaped CPW-fed stub has satisfied UWB bandwidth for 3.0~11.8 GHz. Then, creating 2-order Hilbert curve slot line in the stub's patch area, 4.9~5.6 GHz that centered frequency is 5 GHz is eliminated. Finally, the designed antenna constructed on FR4-epoxy has $20{\times}15\;mm^2$ dimension. The measured results that are obtained return loss under -10 dB through 3.2~11.8 GHz without Wi-Fi bandwidth, a linear phase characteristic, a stable group delay, and omnidirectional radiation patterns are presented.

Tri-Band Folded Monopole Antenna Design with MNG Single Cell Metamaterial Loading (MNG 단일셀 메타매질 부하를 갖는 삼중대역 폴디드 모노폴 안테나 설계)

  • Lee, Young-Hun
    • Journal of IKEEE
    • /
    • 제22권1호
    • /
    • pp.127-135
    • /
    • 2018
  • This paper was studied the tri-band folded monopole antenna design with Mu-negative metamaterial unit cell, which operates at 700 MHz UHD broadcast band and 2.45 GHz/5 GHz WiFi band. The MNR metamaterial is fabricated by forming a capacitor on the backside of the antenna substrate and connecting it to the ground plane through a strip line and a via hole so that a single cell can operate in the MZR (Mu zero resonator). Through this, the resonance point can be controlled to resonate in the zero mode in 700 MHz band, and the bandwidth is improved. Experimental results show that the 10dB bandwidth and gain are 309 MHz (41.2%) and 5.298 dB at the first resonance point, and the 10dB bandwidth and gain at the second resonance point are 821.9 MHz (33.5%) and 2.7840 dB respectively. At the third resonance point, the gain and bandwidth were 1.1314 GHz (20.6%) and 2.9484 dB respectively. We confirmed that the resonance point with theoretical value is in agreement with experimental value. And the radiation pattern is generally omnidirectional, and it has been confirmed that the radiation pattern is good in both forward and backward directions at 0.75 GHz and 2.45 GHz, and has a radiation pattern with multiple lobes at 5.5 GHz.

Dual Band-notched Monopole Antenna for 2.4 GHz WLAN and UWB Applications (이중대역 저지특성을 가지는 2.4 GHz WLAN 및 UWB 겸용 모노폴 안테나)

  • Lee, Ki-yong;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • 제21권2호
    • /
    • pp.193-199
    • /
    • 2017
  • In the paper, a dual band-notched monopole antenna is proposed for 2.4 GHz WLAN (2.4 ~ 2.484 GHz) and UWB (3.1 ~ 10.6 GHz) applications. The 3.5 GHz WiMAX band notched characteristic is achived by a pair of L-shaped slots instead of the previous U-shaped slot on the center of the radiating patch, whereas the 7.5 GHz band notched characteristic is achived by C-shaped strip resonator placed near to the microstrip feed line. The measured impedance bandwidth (${\mid}S_{11}{\mid}{\leq}-10dB$) is 8.62 GHz (2.38 ~ 11 GHz) which is sufficient to cover 2.4 GHz WLAN and UWB band, while measured band-notched bandwidths for 3.5 GHz WiMAX and 7.5 GHz bnad are 1.13 GHz (3.15 ~ 4.28 GHz) and 800 MHz (7.2 ~ 8 GHz) respectively. In particular, it has been observed that antenna has a good omnidirectional radiation patterns and higher gain of 2.51 ~ 6.81 dBi over the entire frequency band of interest.