• Title/Summary/Keyword: Olefin

Search Result 264, Processing Time 0.028 seconds

Korea Emissions Inventory Processing Using the US EPA's SMOKE System

  • Kim, Soon-Tae;Moon, Nan-Kyoung;Byun, Dae-Won W.
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.34-46
    • /
    • 2008
  • Emissions inputs for use in air quality modeling of Korea were generated with the emissions inventory data from the National Institute of Environmental Research (NIER), maintained under the Clean Air Policy Support System (CAPSS) database. Source Classification Codes (SCC) in the Korea emissions inventory were adapted to use with the U.S. EPA's Sparse Matrix Operator Kernel Emissions (SMOKE) by finding the best-matching SMOKE default SCCs for the chemical speciation and temporal allocation. A set of 19 surrogate spatial allocation factors for South Korea were developed utilizing the Multi-scale Integrated Modeling System (MIMS) Spatial Allocator and Korean GIS databases. The mobile and area source emissions data, after temporal allocation, show typical sinusoidal diurnal variations with high peaks during daytime, while point source emissions show weak diurnal variations. The model-ready emissions are speciated for the carbon bond version 4 (CB-4) chemical mechanism. Volatile organic carbon (VOC) emissions from painting related industries in area source category significantly contribute to TOL (Toluene) and XYL (Xylene) emissions. ETH (Ethylene) emissions are largely contributed from point industrial incineration facilities and various mobile sources. On the other hand, a large portion of OLE (Olefin) emissions are speciated from mobile sources in addition to those contributed by the polypropylene industry in point source. It was found that FORM (Formaldehyde) is mostly emitted from petroleum industry and heavy duty diesel vehicles. Chemical speciation of PM2.5 emissions shows that PEC (primary fine elemental carbon) and POA (primary fine organic aerosol) are the most abundant species from diesel and gasoline vehicles. To reduce uncertainties in processing the Korea emission inventory due to the mapping of Korean SCCs to those of U.S., it would be practical to develop and use domestic source profiles for the top 10 SCCs for area and point sources and top 5 SCCs for on-road mobile sources when VOC emissions from the sources are more than 90% of the total.

Synthesis of Permethrin using Ester Enolate Claisen Rearrangement (에스테르엔올 음이온의 Claisen 자리옮김 반응에 의한 Permethrin의 합성)

  • In-Kyu Kim;Suk-Ku Kang;Jang-Hoo Hong
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.548-552
    • /
    • 1986
  • A stereoselective synthesis of 3-phenoxybenzyl (${\pm}$)-cis and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-1-cyclopropanecarboxylic acid starting from readily available 2-methyl-3-buten-2-ol($\underline{2}$) is described. Allylic rearrangement of 2-methyl-3-buten-2-ol, in the presence of acetic acid and acetic anhydride gave 3-methyl-2-butenyl acetate($\underline{3}$). The [3,3] sigmatropic rearrangement of the allyl acetate($\underline{3}$), as the silylketene acetal, produced the ${\gamma},\;{\delta}$-unsaturated acid($\underline{4}$). Treatment of 3,3-dimethyl-4-pentenoic acid($\underline{4}$) with SOCl2 followed by esterification with 3-phenoxybenzyl alcohol yielded 3, 3-dimethyl-4-pentenoic acid ester($\underline{5}$). Addition of carbon tetrachloride to the olefin ester($\underline{6}$) furnished 4,6,6,6-tetrachloro-3,3-dimethylhexanoic acid ester ($\underline{7}$). Cyclization with potassium t-butoxide and elimination of hydrogen chloride afforded 3-phenoxybenzyl (${\pm}$) cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-1-cyclopropanecarboxylic acid.

  • PDF

Reaction of Organic Halogen Compounds with Potassium Fluoride. (Ⅲ) Fluorination of Aromatic vic-dihalides (有機할로겐化合物과 KF의 反應 (第3報) 芳香族이웃디할라이드의 弗化反應)

  • You Sun Kim;Ki Soo Kim
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.68-74
    • /
    • 1969
  • Flourination of Ethyl, ${\alpha},{\beta$}-dichloro-${\beta$}-phenyl propionate, Ethyl ${\alpha},{\beta$}-dibromo ${\beta$}-phenyl propionate, Ethyl ${\alpha},{\beta$}-dichloro ${\beta$}-(p-chloro-phenyl) propionate, and dibromostyrene by potassium fluoride were investigated in presence of dimethyl formamide, diethylene glycol, and diethylene glycol monomethyl-ether. The reactivity of these organic halogen esters and hydrocarbons towards potassium fluoride was checked further by means of radioactive fluorine-18. tracer. Generally, the reaction gave monofluoride together with dehalogenated olefin. The formation of olefine was increased when the reaction was done at high reaction temperature in presence of diethylene glycol, whereas the lower reaction temperature in presence of diethyleneglycol monomethyl ether favored the formation of mono fluoride in a good yield. The procedures and methods of the identification of monofluorides were described and the feasibility of this reaction of fluorine containing ester including the F-18 labelled compounds was discussed.

  • PDF

Carbonylative Cyclization of Unsaturated Carboxylic Acids by Palladium Complexes with Phosphines [III] Palladium (0, II)-Phosphine Complexes Catalyzed Cabonylation of Unsaturated Carboxylic Acids and It's Theoretical Studies (포스핀류가 배위된 팔라듐 착물에 의한 불포화카르복실산의 카르보닐화 고리반응 (제 3 보). 팔라듐 (0, II)-포스핀계 착물에 의한 불포화카르복실산의 카르보닐화 반응 및 그의 이론적 연구)

  • Myung-Ki Doh;Bong-Gon Kim;Maeng-Jun Jung;Young-Dae Song;Park Byung-Kak
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.10
    • /
    • pp.903-909
    • /
    • 1993
  • Reaction mechanism of palladium(0, II)-phosphines complexes catalyzed cyclocarbonylation for unsaturated carboxylic acid such as crotonic acid, methacrylic acid and 3-butenoic acid has been investigated by product analysis, molecular mechanics and extended Huckel molecular orbital method. Reaction of 3-butenoic acid with palladium(0, II)-phosphines catalyst gives palladium containing cycloester through intermediate palladium-olefin ${\pi}$ -complex in the catalytic carbonylation. Palladium(0, II)-phosphines complexes catalyze the cyclocarbonylation of 3-butenoic acid to give 3-methylsuccinic anhydride and glutaric anhydride. But ${\pi}$ -complexes with palladium(0, II)-phosphines and unsaturated carboxylic acids such as crotonic acid and methacrylic acid are not effective the catalytic cyclocarbonylation.

  • PDF

$SrTiO_3$/유기물 복합재료 기반의 내장형 수동소자 구현

  • Lee, Gwang-Hoon;Yoo, Chan-Sei;Yoo, Myong-Jae;Park, Se-Hoon;Kim, Dong-Su;Lee, Woo-Sung;Yook, Jong-Gwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.38-38
    • /
    • 2008
  • 무선 통신에 사용되는 기판에서 passive device는 대부분 기판 위에 개별적으로 표면 실장 되고 있으며 전체 기판면적에 80% 정도를 차지하고 있다. 따라서 기판의 소형화, 경량화를 위하여 많은 면적을 차지하는 수동소자들을 다층인쇄회로기판(multi-layer circuit board)에 내장하는 내장형 수동소자(embedded passive device) 기술이 연구되고 있다. 본 연구원에서 개발한 복합재료는 무기물 충전제 $SrTiO_3$를 사용하였으며, 열가소성 수지로는 cyclo-olefin-polymer계열의 수지를 바탕으로 제작 하였고, 유전율7~7.5이고 유전손실은 0.0045이다. 또한 $SrTiO_3$/유기물 복합재료는 공정온도가 낮고 경제적인 유기물에 높은 유전상수를 갖는 무기물이 분산되어 있는 형태이며, 우수한 유전 특성, 화학적 안정성, 저온 제조공정, 제조단가의 감소, 패키징 크기의 감소 등의 장점을 갖는다. 개발된 재료를 기반으로 Multi-layer 구조를 이용한 다양한 용량대의 capacitor를 구현 하였으며, spiral inductor 와 내장형 spiral inductor를 구현하여 다양한 용량대의 inductor를 구현 하였다. 그리고 각각의 구조에 따른 inductance와 Q factor를 분석 하였으며, Q factor가 100이상인 high Q inductor도 구현하였다. 이렇게 구현된 내장형 수동소자는 기판의 크기의 감소와 제조 단가의 절감, 최소 크기의 기판을 구현하는데 응용이 가능 할 것으로 예상 된다.

  • PDF

Process of the Selective Production of 1-Butene through Positional Isomerization from 2-Butenes (2-부텐으로부터 위치 이성화 반응을 통한 선택적 1-부텐의 제조 공정)

  • Ko, MinSu;Jeon, Jong-Ki;Cho, Jungho;Lee, Seong Jun;Lee, Jae Ho
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.692-696
    • /
    • 2008
  • There is not much method of using C4 Raffinate III, despite having high olefin contents. The majority of the C4 Raffinate III have been converted into n-butane through hydrogenation, and sold as LPG. The C4 Raffinate III is rich 2-butenes with very low isobutene and isobutene contents. The 2-butenes are converted into 1-butene in the vicinity of thermodynamic equilibrium yield through positional isomerization with n-almumina catalyst calcinated at $400{\sim}600^{\circ}C$. The overall process is composed of isomerization-reactor, de-1-buteneizer to prepare the reactants and to enrich reactive products, and 1-butene column to product a high purity 1-butene. The production of 1-butene increases by 40~60 wt% with the selective positional isomerization from the existing separation method.

The Influence of the Internal Donors in the Heterogenous Olefin Polymerization Catalyst on the Molecular Structure of Linear Low Density Polyethylene (불균일계 올레핀 중합촉매내 내부전자공여체가 선형 저밀도폴리에틸렌 분자구조에 미치는 영향)

  • Ko, Young Soo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.410-413
    • /
    • 2007
  • The effect of internal donor(ID) in the heterogeneous Ziegler-Natta catalyst on the ethylene-1-butene copolymerization and the molecular structure of the resulting copolymer was investigated. $SiO_2$-supported $TiCl_4$ catalysts having ID/Ti molar ratio of 0.5 were prepared with ethyaluminium dichloride, magnesium alkyl, 2-ethyl-1-hexanol and $TiCl_4$. Three different IDs were employed such as ethylbenzoate(EB), diisobuylphthalate(DIBP) and dioctylphthalate(DOP). ID-added catalyst showed a larger fraction of Ti(+3) compared to that of no ID-added catalyst. The EB-added catalyst showed the highest activity in copolymerization. Xylene soluble value decreased by more than 50 % with ID-added catalysts compared to that of no ID-added catalyst. Crystaf analysis showed the chemical compositional distribution of PE copolymer was improved in the case of DIBP-added catalyst significantly. It could be explained that the presence of ID could make more even active sites and block the non-stereospecific active sites.

Reaction of Representative Organic Compounds with Sodium Borohydride in the Presence of Aluminum Chloride (염화알루미늄 존재하에서의 수소화붕소나트륨과 대표적 유기화합물과의 반응)

  • Yoon Nung Min;Ho Jun Leeq;Jin Soon Chung
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.275-285
    • /
    • 1973
  • The addition of one mole of aluminum chloride to three moles of sodium borohydride in tetrahydrofuran gives a turbid solution with enormously more powerful reducing properties than those of sodium borohydride itself. The reducing properties of this reagent were tested with 49 organic compounds which have representative functional groups. Alcohols liberated hydrogen immediately but showed no sign of hydrogenolysis of alkoxy group. Aldehydes and ketones were reduced rapidly within one hr. Acyl derivatives were reduced moderately, however, carboxylic acids were reduced much more slowly. Esters, lactones and epoxides were reduced readily than sodium borohydride or borane. Tertiary amide was reduced slowly, however, primary amide consumed one hydride for hydrogen evolution but reduction was sluggish. Aromatic nitrile was reduced much more readily than aliphatic nitrile. Nitro compounds were inert to this reagent but azo and azoxy groups were slowly attacked. Oxime was reduced slowly but isocyanate was only partially reduced. Disulfide and sulfoxide were attacked slowly but sulfide and sulfone were inert. Olefin was hydroborated rapidly.

  • PDF

Synthesis of Conjugated Dienals by Palladium-Catalyzed Vinyl Substitution Reaction (팔라듐 촉매화 비닐 치환 반응을 이용한 Conjugated Dienals의 합성)

  • Jong-Tae Lee;Jin Il Kim
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.335-341
    • /
    • 1984
  • Acetals of ${\alpha},{\beta}$-unsaturated aldehydes reacted readily with aryl bromides in the presence of palladium catalyst and triethylamine to form aryl conjugated enals. Acrolein diethyl acetal and methacrolein diethyl acetal were reacted with phenyl bromides with substituents such as methyl and isopropyl groups at $100^{\circ}C$. The reaction products yields except the reaction of o-bromotoluene with methacrolein diethyl acetal. The products were identified by proton nuclear magnetic resonance and infrared spectroscopy. In the reverse combination of reactants to prepare aliphatic 2,4-dienals in good yield of above 50%, 3-bromopropenal dimethyl acetal and (E)-3-bromo-2-methylpropenal diethyl acetal were used as vinylic halide reactants and 1-alkenes and ethyl acrylate as olefin reactants.

  • PDF

Synthesis of ArOTiCl3 complexes and their application for ethylene polymerization and copolymerization

  • Wang, Jianwei;Ren, Yingchun;Xu, Sheng;Mi, Puke
    • Advances in materials Research
    • /
    • v.6 no.3
    • /
    • pp.303-316
    • /
    • 2017
  • In this article, novel olefin polymerization catalyst with lower cost and simple synthetic process were developed, $ArOTiCl_3$ complexes [$(2-OMeC_6H_4O)TiCl_3(C1)$, $(2,4-Me_2C_6H_3O)TiCl_3(C2)$, $TiCl_3(1,4-OC_6H_4O)TiCl_3(C3)$, $TiCl_3(1,4-OC_6H_2O-Me_2-2,5)$ $TiCl_3(C4)$] and corresponding $(ArO)_2TiCl_2$ complexes [$TiCl_2(OC_6H_4-OMe-2)_2(C5)$ and $TiCl_2(OC_6H_3-Me_2-2,6)_2(C6)$] have been synthesized by the reaction of $TiCl_4$ with phenol, all these complexes were well characterized with $^1H$ NMR, $^{13}C$ NMR, MASS and EA. When combined with methylaluminoxane (MAO), the $ArOTiCl_3/MAO$ system shows high activity for ethylene copolymerization with 1-octene and copolymer was obtained with broaden molecular weight distribution (MWD). The $^{13}C$ NMR result of polymer indicates that the 1-octene incorporation in polymer reached up to 8.29 mol%. The effects of polymerization temperature, concentration of polymerization monomer and polymerization time on the catalytic activity have been investigated.