• Title/Summary/Keyword: Old newsprint

Search Result 17, Processing Time 0.022 seconds

Developing Wastepaper Demand-Supply Model and Policy Measures to Increase Wastepaper Recycling Rate (폐지시장(廢紙市場)의 수요(需要)·공급(供給) 모델의 개발(開發)과 회수율(回收率) 제고방안(提高方案))

  • Choi, Kwan;Han, Sang-Yoel
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.133-147
    • /
    • 1994
  • Wastepaper recycling has significant implications not only in providing scarce raw material input for the paper industry but in environmental concerns such as reducing solid waste disposal, energy conservation and preservation of forest resources. The objectives of this study was (1) to develop an econometric model of demand for and supply of wastepaper, (2) to forecast wastepaper consumption and price to the year 2000 applying the econometric models estimated and (3) to estimate the elasticity of variables which are included in the wastepaper supply and demand equations. In this study wastepaper was classified into three groups, old newsprint, old corrugated and mixed For each group such as demand and supply equation were estimated. The demand equations were estimated as a function of paper and paper product consumption and wholesale price index and supply equations as a function of wastepaper price, one year lagged paper and paperproduct consumption and transportation price. Applying the econometric models to forcasting results in the future consumption and supply of wastepaper projected as 11.645 million MT and 7.396 million MT in 2000, respectively. The rate of wastepaper self-supply is forcasted about 63.5% in 2000. Especially, the rate of old neswprint self-supply is predicted about 16% which means about 2.2 million MT of old newsprint should be imported from foreign countries. Lastly, some policy measures to promote wastepaper recycling rate based upon economic and physical characteristics of wastepaper and market structure are suggested.

  • PDF

RECYCLING OF WASTEPAPER WITH ALKALINE ENZYME FROM COPRINACEAE SP.

  • Eom, Tae-Jin;Lee, Jung-Myoung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.291-295
    • /
    • 1999
  • Coprinus cinereus 2249 that is a kind of basidiomycetes constitutively produced alkaline carboxymethyl cellulase (CMCase), filter paper cellulase (FPase) and xylanase. Crude enzymes prepared with optimal conditions showed higher FPase activity than CMCase activity. The FPase was most active at pH 9 at 50$^{\circ}C$. When applied on deinking of the old newsprint (ONP), it increases the freeness and brightness due to effect of hydrolysis at 0.1% enzyme concentration. Also, The physical properties of deinked pulp were improved.

Effects of Endoglucanase and Exoglucanase from Trichoderma viride on Brightness and Physical Properties of Deinked Old Newsprint (Trichoderma viride로부터 분리한 Endoglucanase 및 Exoglucanase가 탈묵 펄프의 백색도 및 물리적 강도에 미치는 영향)

  • 김동원;정영규장영훈손기향
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.718-725
    • /
    • 1996
  • Old newsprint was deinked with endoglucanase, exoglucanase and their various compositions from Trichoderma viride. The yield decreased with an increase in enzyme concentration. Especially, it was the lowest in the treatment of endo-exo mixture(1:1). It may be regarded as a synergistic actions of the cellulase components. The brightness was the highest in pulp deinked with endo-exo mixture(1:1). Maximum brightness was observed when 0.5mg/mL of the endo-exo mixture was used. The physical strength increased with increasing concentration in exoglucanase. But, it decrease with increasing concentration in endoglucanse and endo-exo mixture(1:1). Also, we investigated the yield, brightness and physical strength of endoglucanase in combination with exoclucanase(12:1, 8:1, 4:l, 1:1, 1:4, 1:8, 1:12). Maximal deinking conditions, obtained at a specific optimal ratio of endoglucanase to exoglucanse are as follow ; 12:1 for yield, 12:1 for brightness, 4:1 for tensile strength, 12:1 for bursting strength, and 8:1 for tearing strength. These results indicated that the deinking depended largely upon the action of endoglucanase. Exoglucanase was occupying more than 60% of the total crude cellulase contents. Therefore, the most effective deinking must repress the action of exoglucanase.

  • PDF

Screening of Microorganisms Secreted High Efficient Enzymes and Properties of Enzymatic Deinking for Old Newsprint(V) - Characteristics of Cellulase and Xylanase from Bacillus sp. - (고효율 효소를 분비하는 균주의 선발 및 신문고지의 효소탈묵 특성(제5보) - Bacillus sp.에서 단리한 Cellulase와 Xylanase의 특성 -)

  • Park, Seong-Cheol;Lee, Yang-Soo;Jeong, In-Soo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.9-16
    • /
    • 2005
  • This study was carried out to investigate the characteristics of extracellular cellulase and xylanase from 4 selected different species, such as enzyme activity and stability by pH, temperature and metal ions, for application into enzymatic deinking system. The optimal temperature and pH for enzyme activity of Bacillus pumilus I, B. subtilis I, B. pumilus II and B. subtilis II were mainly $40{\sim}60^{\circ}C$ and pH $6.0{\sim}7.0$, respectively. Certain metal ions, calcium and cobalt, elevated enzyme activity, even though there were different results of enzyme activities based on various metal ions in 4 different species. With these results we suggest that enzymatic deinking system should be proceed at $50^{\circ}C$ with neutral pH condition.

Screening of Microorganisms Secreted High Efficient Enzymes and Properties of Enzymatic Deinking for Old Newsprint(VI) -Characteristics of Cellulase and Xylanase from Fusarium pallidoroseum and Aspergillus niger- (고효율 효소를 분비하는 균주의 선발 및 신문고지의 효소탈묵 특성(제6보) -Fusarium pallidoroseum과 Aspergillus niger에서 단리한 Cellulase와 Xylanase의 특성-)

  • Park Seong-Cheol;Lee Yang-Soo;Jeong In-Soo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.4 s.112
    • /
    • pp.1-7
    • /
    • 2005
  • This study was carried out to investigate the characteristics of extracellular cellulase and xylanase from Fusarium pallidoroseum and Aspergillus niger, such as enzyme activity and stability by various pH, temperature and metal ions, for application into enzymatic deinking system. The optimal temperature and pH for enzyme activity and stability of Fusarium pallidoroseum and Aspergillus niger were $50^{\circ}C$, pH 5.0 and $60^{\circ}C$, pH 9.0, respectively. Certain metal ions, calcium and cobalt, brought to elevate cellulase and xylanase activity from F. pallidoroseum and A. niger. With these results we suggest that enzymatic deinking system should be proceed at $50\~60^{\circ}C$ under their optimal pH condition.

Utilization of Wastepaper Fibers for Development of Environment-friendly Shock-Absorbing Materials (환경친화적 완충재의 개발을 위한 폐지 섬유의 이용)

  • Kim, Gyeong-Yun;Kim, Chul-Hwan;Lee, Young-Min;Song, Dae-Bin;Shin, Tae-Gi;Kim, Jae-Ok;Park, Chong-Yawl
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.2 s.115
    • /
    • pp.52-60
    • /
    • 2006
  • Environment-friendly shock-absorbing materials were made of wastepaper such as Korean old corrugated containers(KOCC) and Korean old newsprint (KONP) with a vacuum forming method. The plate-like cushioning materials made of KOCC and KONP respectively by vacuum forming showed superior shock-absorbing properties with lower elastic moduli compared to expanded polystyrene (EPS) and pulp mold. Even though the plate-like materials had many free voids in their fiber structure, their apparent densities (${\approx}0.1g/cm^3$) were a little higher than that of EPS (${\approx}0.03g/cm^3$) and much lower than that of pulp mold(${\approx}0.3g/cm^3$). However, the elastic moduli of the cushioning materials made of wastepaper were much lower than that of EPS or pulp mold. This finding implies that the cushioning materials made of KOCC fibers containing more lignin than KONP show better shock-absorbing properties than KONP. Moreover, the cushioning materials made of KOCC and KONP respectively showed greater porosity than pulp mold. The addition of cationic starch to the cushioning materials contributed to the increase in the elastic modulus to the same level as that of EPS. Furthermore, the deterioration in fiber quality by repeated use of wastepaper played a positive role in improving shock-absorbing ability.

Manufacture of Biodegradable Polymer with Wastepaper(I) - Pretreatment and Analysis of Chemical Components On Wastepaper - (폐지를 이용한 생분해성 고분자의 제조(I) - 폐지의 화학적 조성 분석 및 전처리 -)

  • Kwon, Ki-Hun;Lim, Bu-Kug;Yang, Jae-Kyung;Chang, Jun-Pok;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.34-41
    • /
    • 2000
  • Recently many scientists have tried to synthesize biodegradable polymers due to durable and non-biodegradable products of conventional synthetic plastics when these were wasted in nature. So to reuse the wastepapers for biodegradable polymer resources, ONP (old newsprint), OCC (old corrugated containerbpard) were carried out by the pretreatment of chlorinite, hypochlorite and oxygen-alkali treatment conditions. For manufacturing of biodegradable polymer with wastepaper, this study performed to investigate change of chemical components and optimal pretreatment condition. The summarized results in this study were as follows: Lignin content in ONP and OCC was was higher than in MOW and ash content was the highest in MOW. More amount of ash components were reduced by wet defiberation than by dry defiberation. Wet defiberation fiber are better than dry defiberated fiber in chemical pretreatment condition for wastepapers, and the best result was obtained in the condition of sodium chlorite at $70^{\circ}C$, because it has high delignification ratio, ${\alpha}$-cellulose contents and degree of polymerization in this treatment condition. Oxygen-alkali treatment condition is the worst method because of low yield, low degree of polymerization in this pretreatments.

  • PDF