• 제목/요약/키워드: Oil.gas potential

검색결과 137건 처리시간 0.028초

Enhancing Business Continuity in the Oil and Gas Industry through Electronic Records Management System Usage to Improve Off-Site Working: A Narrative Review

  • Hawash, Burkan;Mokhtar, Umi Asma';Yusof, Zawiyah M.;Mukred, Muaadh
    • Journal of Information Science Theory and Practice
    • /
    • 제10권2호
    • /
    • pp.30-44
    • /
    • 2022
  • The primary function of an electronic records management system (ERMS) is to support organisations in providing effective records management services by enabling efficient remote access to the organisations' records. This helps the organisation to continue running during emergency events, such as the COVID-19 pandemic. The need to study ERMS for accessing records remotely has increased dramatically, due to the increase in daily use. The situation arising from the COVID-19 pandemic has increased the need for implementing proper digital systems, such as ERMS, to enable efficient work processes and enhance business continuity. An ERMS has the potential to allow organisations to create records and workflows off-site. During a pandemic, the ability to structure processes digitally helps in maintaining operations remotely. This study aims to provide a narrative review of the ERMS literature with an emphasis on explaining the primary components of ERMS that act as enablers for the implementation of the system in the oil and gas sector of developing countries. The current study proposes ERMS roles and responsibilities that could enhance business continuity. The authors use a qualitative narrative review and analyse the literature related to this study and its findings. The results show that, in cases of risk or crises, staff members need to have easy access to their records and documents to remain productive. An ERMS allows professionals to remain active and work off-site. Thus, ERMS play a significant role in protecting an organisation's content through the monitoring and control over who has authorisation to access its records.

Phytochemical Screening and Antibacterial Activity Coix lacryma-jobi Oil

  • Diningrat, Diky Setya;Risfandi, Marsal;Harahap, Novita Sari;Sari, Ayu Nirmala;Kusdianti, Kusdianti;Siregar, Henny Kharina
    • Journal of Plant Biotechnology
    • /
    • 제47권1호
    • /
    • pp.100-106
    • /
    • 2020
  • Coix lacryma-jobi (Hanjeli) is known to posses anti-microbial properties. Therefore, phytochemical compounds of C. lacryma-jobi have been studied to produce novel antimicrobial agents as treatments against antibiotic-resistant bacteria.The objective of this study was to determine the phytochemical composition and antibacterial activity of the C. lacryma-jobi oil against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The phytochemical composition of the oil was determined via gas chromatography mass spectrophotometry (GC-MS). Moreover, agar disk and agar well diffusion were employed to screen the antibacterial activity of the oil. An agar well diffusion test was implemented to determinate MIC's (minimum inhibitory concentrations). Dodecanoic acid, tetradecanoic acid, 2,3-dihydroxypropylester, 1,3-dioctanoin, N-methoxy-N-methyl-3,4-dihydro-2H-thiopyran6-carboxamide, propanamide, 5-Amino-1-(quinolin-8-yl)-1,2,3-triazole-4-carboxamide, and pyridine were identified in the C. lacryma-jobi oil. The MIC value of the oil was 0.031 g/L and the MBC of the oil was 0.125 g/L effective in all test bacteria. Dodecanoic acid displayed inhibitory activity against gram-positive and gram-negative bacteria. Therefore, our research demonstrated C. lacryma-jobi (Hanjeli) oil exhibited antibacterial activity against E. coli, S. aureus, and B. subtilis. These research suggest that C. lacryma-jobi root oil could be used for medicinal purposes; however clinical and in vivo tests must be performed to evaluate its potential as an antibacterial agent.

Failure Probability Assessment of an API 5L X52 Gas Pipeline with a Wall-thinned Section

  • Lee Sang-Min;Yun Kang-Ok;Chang Yoon-Suk;Choi Jae-Boong;Kim Young-Jin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권3호
    • /
    • pp.24-29
    • /
    • 2006
  • Pressurized gas pipelines are subject to harmful effects from both the surrounding environment and the materials passing through them. Reliable assessment procedures, including fracture mechanics analyses, are required to maintain their integrity. Currently, integrity assessments are performed using conventional deterministic approaches, even though there are many uncertainties to hinder rational evaluations. Therefore, in this study, a probabilistic approach was considered for gas pipeline evaluations. The objectives were to estimate the failure probability of a corroded pipeline in the gas and oil industries and to propose limited operating conditions for different types of loadings. To achieve these objectives, a probabilistic assessment program was developed using a reliability index and simulation techniques, and applied to evaluate the failure probabilities of a corroded API-5L-X52 gas pipeline subjected to internal pressures, bending moments, and combined loadings. The results demonstrated the potential of the probabilistic integrity assessment program.

미세조류 이용 바이오디젤 항공유 기술개발 동향 연구 (A Research of Trends in Development of Bio-Diesel Aviation Fuel Technology using Microalgae)

  • 윤한영
    • 한국항공운항학회지
    • /
    • 제32권2호
    • /
    • pp.151-158
    • /
    • 2024
  • Microalgae are aquatic microorganisms capable of photosynthetic growth using water, carbon dioxide and sunlight, and can replace petroleum for transportation. It is receiving great attention as a potential next-generation biological resource. The microalgae biodiesel production process is largely based on the development of highly efficient strains and mass production. It consists of cultivation, harvesting, oil extraction, fuel conversion and by-product utilization. Currently, microalgae diesel is 3-5 times more expensive than petroleum diesel. However, with the optimization of each element technology and the development of integrated systems, not only biofuels, but also industrial materials, wastewater treatment, and greenhouse gases As application expands to various fields such as abatement, the timing of commercialization may be brought forward. Oil prices have recently fallen due to the influence of sail gas. Although there has been a significant drop, global warming is an urgent challenge for current and future generations. In particular, Korea, which does not have oil resources, We must always prepare for political environmental changes, high oil prices, and energy crises. In this paper, the need for eco-friendly biofuel for carbon dioxide conversion. In addition to research trends, domestic and international research trends, and economic prospects, the concept of microalgae and the element technologies of the biodiesel production process are briefly discussed introduced.

Evaluation of Herbicidal Potential of Essential Oils and their Components under In vitro and Greenhouse Experiments

  • Choi, Hae-Jin;Sowndhararajan, Kandhasamy;Cho, Nam-Gyu;Hwang, Ki-Hwan;Koo, Suk-Jin;Kim, Songmun
    • Weed & Turfgrass Science
    • /
    • 제4권4호
    • /
    • pp.321-329
    • /
    • 2015
  • The present study aimed to evaluate the phytotoxic potential of essential oils. For this purpose, 18 essential oil samples extracted from Korean plants and 64 commercial essential oils were screened for their phytotoxic potential against the seedling growth of Brassica napus L. (rapeseed). Among the 82 samples, 11 commercial oils (cinnamon, citronella, clove, cumin seed, geranium, jasmine, lemongrass, palmarosa, pimento, rose otto and spearmint) strongly inhibited the seedling growth with $GR_{50}$ value < $150{\mu}g\;mL^{-1}$. Major components from these effective essential oils were identified by solid phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS). GC-MS analyses revealed that the effective samples mainly consist of benzyl benzoate, carvone, citral, citronellol, eugenol, geraniol, D-limonene and terpinene. Subsequently, bioactivity of these individual components was evaluated against the seedling growth of B. napus, Echinochloa crus-galli and Aeschynomene indica. The components from different chemical groups exhibited different potency in inhibiting the seedling growth with varied $GR_{50}$ values ranged from $29{\mu}g\;mL^{-1}$ to > $1000{\mu}g\;mL^{-1}$. In the greenhouse experiment, citral and geraniol completely suppressed the growth of all the tested 10 plants at $100kg\;ha^{-1}$. In conclusion, the individual essential oil components geraniol and citral could be used as natural herbicides for weed management.

셰일가스 자원을 중심으로 한 중국의 에너지·광물자원 조사·탐사·개발 기술 정책분석 (Analysis on Survey, Exploration and Development Policy and Technology of China : Focused on Shale Gas Resources)

  • 이재욱;김성용;안은영;박정규
    • 자원환경지질
    • /
    • 제47권3호
    • /
    • pp.291-302
    • /
    • 2014
  • 중국 정부와 산하기관들은 자국의 불안정한 자원수급을 위해 노력하고 있다. 중국 국토자원부(MNR)는 광물에너지자원 잠재력과 가채매장량 평가를 위해 중국 국토자원규획(1999~2010), 중국 광산자원조사규획(2008~2020), 중국 셰일가스산업정책 공고(2013), 중국 셰일가스 자원평가 및 우선 개발지역 선정 프로젝트(2012), 중국 셰일가스 개발규획(2011~2015) 등과 같은 국가 차원의 시책을 시행하였다. 중국의 셰일가스 자원은 국가 매장량의 대부분으로 평가된 우수한 잠재력을 가진 쓰촨분지와 타림분지, 2개의 거대 퇴적분지는 있는데, 이미 전 국토에 걸쳐 셰일가스 가채 매장량이 광범위하게 분포하는 것으로 조사되었다. 중국의 셰일가스 가채 매장량 규모는 31조 $m^3$(1,115조 cubic feet) 정도로 평가되고 있으며, 중국의 미국, 캐나다와 함께 세계 3대 셰일가스 상업생산이 가능한 국가 중의 하나이다. 지금 중국은 셰일가스의 상업생산을 증진하기 위한 기술개발과 가채 매장량의 확충을 위한 조사 탐사활동에 매진하고 있다. 중국의 이러한 정책과 개발 관련 기술분석을 토대로 할 때, 우리는 국제 유가시장 변동 등에 따른 중국의 셰일가스 개발과 R&D 동향을 적극적으로 모니터링 되어야 한다고 사료된다.

전기비저항에 의한 지중저장 이산화탄소 거동관측 모의실험 (Electrical resistivity monitoring of a scale model experiment for geological $CO_2$ sequestration)

  • 박미경;장한누리;김희준;왕수균;이민희
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.173-178
    • /
    • 2007
  • Time-lapse electrical resistivity measurements have been made in a scale model experiment for geological $CO_2$ sequestration in aquifer. Three types of $CO_2$ injection are tested in a water tank filled with glass beads. These are $CO_2$ dissolved into filtered tap water, $CO_2$ gas, and mineral oil. The mineral oil is a substitute for liquid phase of supercritical $CO_2$. For reconstructing three-dimensional resistivity images, we measure potential differences at 32 potential dipoles on the top surface of the tank due to two current dipoles on the front and back sides. The resultant resistivity images clearly show the movement of injected $CO_2$ in aquifer.

  • PDF

Chemical Composition of Cactus Pear Seed Oil: phenolics identification and antioxidant activity

  • Ali, Berraaouan;Abderrahim, Ziyyat;Hassane, Mekhfi;Marianne, Sindic;Marie-Laure, Fauconnier;Abdelkhaleq, Legssyer;Mohammed, Aziz;Mohamed, Bnouham
    • 대한약침학회지
    • /
    • 제25권2호
    • /
    • pp.121-129
    • /
    • 2022
  • Objectives: The chemical composition of cactus pear seed oil (Opuntia ficus-indica [L.] Mill.) was analyzed in terms of its fatty acid composition, tocopherol content, phenolic identification, and the oil's phenolic-rich fraction antioxidant power was determined. Methods: Fatty acid profiling was performed by gas chromatography coupled to an FI detector. Tocopherols and phenolic compounds were analyzed by LC-FLD/UV, and the oil's phenolic-rich fraction antioxidant power was determined by phosphomolybdenum, DPPH assay and β-carotene bleaching test. Results: Fatty acid composition was marked by a high unsaturation level (83.22 ± 0.34%). The predominant fatty acid was linoleic acid (66.79 ± 0.78%), followed by oleic acid (15.16 ± 0.42%) and palmitic acid (12.70 ± 0.03%). The main tocopherol was γ-tocopherol (172.59 ± 7.59 mg/kg. In addition, Tyrosol, vanillic acid, vanillin, ferulic acid, pinoresinol, and cinnamic acid were identified as phenolic compounds in the analyzed seed oil. Moreover, the oil's phenolics-rich fraction showed a significant total antioxidant activity, scavenged DPPH up to 97.85%, and effectively protected β-carotene against bleaching (97.56%). Conclusion: The results support the potential use of cactus pear seed oil as a functional food.

롤스로이스 기술개발 동향 (Heat Exchangers for Gas Turbine Cycles and Thermal Management)

  • Stieger, Rory
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.465-465
    • /
    • 2011
  • Rolls-Royce is a global company producing advanced power systems for use on land, at sea and in the air. In order to develop competitive products and services, Rolls-Royce invests in technology, infrastructure and capability with much of the research carried out in a global network of University Technology Centres, such as the UTC in Thermal management at Pusan National University. Heat exchangers and thermal management play a critical role in today's gas turbine engines, maintaining the fuel and oil temperatures within the correct operational range. Future products are likely to place an increased duty on the thermal management system and thus require advances in heat exchanger design, installation and manufacturing. Heat exchangers further have the potential to play a vital role in Advanced Cycle Gas Turbine products. The Intercooled and recuperated WR21 marine gas turbine engine recently entered service with the Royal Navy and is delivering very attractive fuel burn in service. The development of an advanced cycle aero-engine is a significantly greater challenge, requiring better understanding of compact and light weight heat exchanger surfaces, novel installations and ducting systems and may required novel manufacturing techniques to achieve the volume, weight and cost necessary to realise a viable advanced cycle gas turbine aero-engine.

  • PDF

Dynamic Analysis of the Piston Slap Motion in Reciprocating Compressors

  • Kim, Tae-Jong
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.411-412
    • /
    • 2002
  • Piston-cylinder system are widely used in power engineering applications. In reciprocating refrigeration compressors, where extremely low friction losses are required, ringless pistons are being used to diminish the friction between piston rings and cylinder wall. Since the ringless piston has the freedom of lateral motion there is a potential danger that it will occasionally hit the cylinder wall while moving up and down along it's axis. A good design must therefore provide a smooth and stable reciprocating motion of the piston and ensure that the fluid film separating the piston from the cylinder wall is maintained all times. And the compromise between refrigerant gas leakage through the piston-cylinder clearance and the friction losses is required utilizing a dynamic analysis of the secondary motion for the high efficiency compressor. To this end, the computer program is developed for calculating the entire piston trajectory and the lubrication characteristics as functions of crank angle under compressor running conditions. The results explored the effects of some design parameters and operating conditions on the stability of the piston, the oil leakage, and friction losses.

  • PDF