• 제목/요약/키워드: Oil.gas potential

검색결과 137건 처리시간 0.024초

Exhaust emissions of a diesel engine using ethanol-in-palm oil/diesel microemulsion-based biofuels

  • Charoensaeng, Ampira;Khaodhiar, Sutha;Sabatini, David A.;Arpornpong, Noulkamol
    • Environmental Engineering Research
    • /
    • 제23권3호
    • /
    • pp.242-249
    • /
    • 2018
  • The use of palm oil and diesel blended with ethanol, known as a microemulsion biofuel, is gaining attention as an attractive renewable fuel for engines that may serve as a replacement for fossil-based fuels. The microemulsion biofuels can be formulated from the mixture of palm oil and diesel as the oil phase; ethanol as the polar phase; methyl oleate as the surfactant; alkanols as the cosurfactants. This study investigates the influence of the three cosurfactants on fuel consumption and exhaust gas emissions in a direct-injection (DI) diesel engine. The microemulsion biofuels along with neat diesel fuel, palm oil-diesel blends, and biodiesel-diesel blends were tested in a DI diesel engine at two engine loads without engine modification. The formulated microemulsion biofuels increased fuel consumption and gradually reduced the nitrogen oxides ($NO_x$) emissions and exhaust gas temperature; however, there was no significant difference in their carbon monoxide (CO) emissions when compared to those of diesel. Varying the carbon chain length of the cosurfactant demonstrated that the octanol-microemulsion fuel emitted lower CO and $NO_x$ emissions than the butanol- and decanol-microemulsion fuels. Thus, the microemulsion biofuels demonstrated competitive advantages as potential fuels for diesel engines because they reduced exhaust emissions.

A study on combustion of blended straight vegetable oil in marine diesel engine cylinders

  • Nguyen, Dai An;Tran, The Nam;Dang, Van Uy
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.813-820
    • /
    • 2015
  • Straight vegetable oil (SVO) is widely recommended as fuel for diesel engines in general and especially for marine diesel engines. However, SVOs used directly as fuel for diesel engines may cause problems for the engines; SVOs blended with diesel oil are a better choice. To widen understanding of the possibility of using blended SVOs as fuel alternatives, this paper presents results of experimental research on the combustion of blended straight vegetable oil in a marine diesel engine's cylinders. Results show that the fuel combustion process have the same curves as in simulations and, in the case of using blended fuels with up to 20% palm oil, the test diesel engine technical parameters such as engine output, exhaust gas temperatures, and specific fuel consumption are very similar to those of diesel oil (DO). Based on these results, marine diesel engines are strong potential applications and particularly recommended for the use of SVO blends.

Technical preparedness in Southeast Asia region for onshore dismantling of offshore structures: Gaps and opportunities

  • Jing-Shuo Leow;Jing-Shun Leow;Hooi-Siang Kang;Omar Yaakob;Wonsiri Punurai;Sari Amelia;Huyen Thi Le
    • Ocean Systems Engineering
    • /
    • 제13권1호
    • /
    • pp.79-95
    • /
    • 2023
  • An onshore dismantling yard is an important part in the supply chain of the offshore oil and gas decommissioning industry. However, despite having more than 500 offshore structures to be decommissioned in the Southeast Asia region, there are a very limited number of well-equipped dismantling yards to fully execute the onshore dismantling. Recent investigations discovered that shipbuilding and offshore structure fabrication yards are still potential options for upgrades to include dismantling. Despite the huge potential opportunities from upgrading to dismantling, research studies on this area are relatively scarce, and most past studies mainly focused on the North Sea region. To date, the potential opportunities of Southeast Asia and Malaysia yards to develop onshore dismantling capability are still unclear. The aim of this study is to identify the criteria to develop a technical preparedness checklist to evaluate an onshore dismantling yard; consequently, this will assist with assessing and bridging the gaps and identify the opportunity of developing an onshore dismantling yard in Southeast Asia region. Requirements for onshore dismantling and related rules and regulations have been investigated and summarized in the form of checklist. Findings from this study can help local oil and gas operators to pursue more local solutions and resilient supply chain performance.

Effects of Coconut Materials on In vitro Ruminal Methanogenesis and Fermentation Characteristics

  • Kim, E.T.;Park, C.G.;Lim, D.H.;Kwon, E.G.;Ki, K.S.;Kim, S.B.;Moon, Y.H.;Shin, N.H.;Lee, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권12호
    • /
    • pp.1721-1725
    • /
    • 2014
  • The objective of this study was to evaluate the in vitro effects of coconut materials on ruminal methanogenesis and fermentation characteristics, in particular their effectiveness for mitigating ruminal methanogenesis. Fistulated Holstein cows were used as the donor of rumen fluid. Coconut materials were added to an in vitro fermentation incubated with rumen fluid-buffer mixture and timothy substrate for 24 h incubation. Total gas production, gas profiles, total volatile fatty acids (tVFAs) and the ruminal methanogens diversity were measured. Although gas profiles in added coconut oil and coconut powder were not significantly different, in vitro ruminal methane production was decreased with the level of reduction between 15% and 19% as compared to control, respectively. Coconut oil and coconut powder also inhibited gas production. The tVFAs concentration was increased by coconut materials, but was not affected significantly as compared to control. Acetate concentration was significantly lower (p<0.05), while propionate was significantly higher (p<0.05) by addition of the coconut materials than that of the control. The acetate:propionate ratio was significantly lowered with addition of coconut oil and coconut powder (p<0.05). The methanogens and ciliate-associated methanogens in all added coconut materials were shown to decrease as compared with control. This study showed that ciliate-associated methanogens diversity was reduced by more than 50% in both coconut oil and coconut powder treatments. In conclusion, these results indicate that coconut powder is a potential agent for decreasing in vitro ruminal methane production and as effective as coconut oil.

현행 주유소 지하유류저장시설 관리의 문제점과 토양${\cdot}$지하수 오염 방지를 위한 개선방안 연구 (Current Issues on the Oil UST Management and Future Directions for the Prevention of the Subsurface Contamination)

  • 김미정
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제9권4호
    • /
    • pp.62-73
    • /
    • 2004
  • 본 연구에서는 주유소 지하유류저장탱크 관리 현황 및 문제점을 살펴보고 이의 개선방안을 제안하였다. 탱크가 제작, 설치, 관리. 그리고 용도폐지 되는 전 과정에 관련한 규정 및 제도, 그리고 시설기준을 검토한 결과, 탱크가 제작되어 용도 폐지 될 때까지 미흡한 관리가 이루어지고 있으며, 현행 시설기준도 미국 및 다수의 EU 회원국가들에 비하여 미흡한 것으로 나타났다. 토양오염검사 결과 및 기타 자료들을 비교 분석하여 토양오염검사의 실효성을 검토하고, 지하유류저장탱크에 의한 실제 누유 가능성을 추정하였다. 개선방안으로는 첫째, 오염방지조치 등 시설기준 강화 - 신규시설의 시설기준강화, 기존시설에 대한 개선조치 수립; 둘째, 토양오염검사의 탱크 및 배관 검사의 대체; 셋째, 탱크제작 및 시공관리 강화, 넷째, 비직영주유소의 토양오염위험 관리를 지원하기 위한 방안 마련; 기타, 주유소 소유운영자에 대한 토양오염관리 교육과 전국 지하유류저장시설의 누유감지 및 방지시설의 설치유무와 시설운용 현황에 대한 자료구축을 제안하였다.

On the Application of CFD Codes for Natural Gas Dispersion and Explosion in Gas Fuelled Ship

  • Kim, Ki-Pyoung;Kang, Ho-Keun;Choung, Choung-Ho;Park, Jae-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.946-956
    • /
    • 2011
  • The main objectives of this study are to analyze the leaked gas dispersion and quantify the potential overpressures due to vapor cloud explosions in order to identify the most significant contributors to risk by using Computational Fluid Dynamics (CFX & FLACS) for gas fuelled ships. A series of CFD simulations and analyses have been performed for the various gas release scenarios in a closed module, covering different release rates and ventilating methods. This study is specially focused on the LNG FGS (Fuel Gas Supply) system recently developed for the propulsion of VLCC crude oil carriers by shipyards. Most of work presented is discussed on the gas dispersion from leaks in the FGS room, and shows some blast prediction validation examples.

Dynamic characteristics and fatigue damage prediction of FRP strengthened marine riser

  • Islam, A.B.M. Saiful
    • Ocean Systems Engineering
    • /
    • 제8권1호
    • /
    • pp.21-32
    • /
    • 2018
  • Due to the escalation in hydrocarbon consumption, the offshore industry is now looking for advanced technology to be employed for deep sea exploration. Riser system is an integral part of floating structure used for such oil and gas extraction from deep water offering a system of drill twines and production tubing to spread the exploration well towards the ocean bed. Thus, the marine risers need to be precisely employed. The incorporation of the strengthening material, fiber reinforced polymer (FRP) for deep and ultra-deep water riser has drawn extensive curiosity in offshore engineering as it might offer potential weight savings and improved durability. The design for FRP strengthening involves the local design for critical loads along with the global analysis under all possible nonlinearities and imposed loadings such as platform motion, gravity, buoyancy, wave force, hydrostatic pressure, current etc. for computing and evaluating critical situations. Finite element package, ABAQUS/AQUA is the competent tool to analyze the static and dynamic responses under the offshore hydrodynamic loads. The necessities in design and operating conditions are studied. The study includes describing the methodology, procedure of analysis and the local design of composite riser. The responses and fatigue damage characteristics of the risers are explored for the effects of FRP strengthening. A detail assessment on the technical expansion of strengthening riser has been outlined comprising the inquiry on its behavior. The enquiry exemplifies the strengthening of riser as very potential idea and suitable in marine structures to explore oil and gas in deep sea.

파일럿규모의 선택적촉매환원장치에서 디젤유를 이용한 질소산화물 제거 (Reduction of Nitrogen Oxides with Diesel Oil In Pilot Scale SCR(Selective Catalytic Reduction) Process)

  • 이인영;류경옥
    • 대한환경공학회지
    • /
    • 제22권11호
    • /
    • pp.1977-1983
    • /
    • 2000
  • 천연가스를 사용하는 복합화력발전소에서 발생되는 질소산화물(NOx)에 대한 귀금속촉매(Pt/Zeolite)의 활성을 디젤유를 환원제로 사용하여 파일럿 규모의 선택적촉매환원장치(selective catalytic reduction)에서 환원제 주입량, 반응온도, 공간속도에 따라 고찰하였다. 시험결과, 디젤유의 주입량을 증가시킬수록 NOx의 전환율은 증가하였으며 C/N비(C/N비: 배기가스 중에 포함된 NOx의 분자수에 대한 환원제 탄소 원자수의 비) 5.5 이상에서는 일정한 전환율을 유지하였다. NOx 전환율에 대한 반응온도의 영향을 알아본 결과, 온도가 증가함에 따라 NOx의 전환율이 증가하여 $190^{\circ}C$의 온도에서 최고 50%의 전환율을 보였다. 7,200/hr~27,000/hr의 범위에서 NOx 전환율에 대한 공간속도의 영향은, 18,500/hr까지 일정한 전환율을 유지하였으며 그 이상에서는 감소하였다. 이상의 결과에서 디젤유를 환원제로 사용하는 질소산화물 제거를 위한 SCR 공정의 적용 가능성을 확인할 수 있었다.

  • PDF

유한요소법을 이용한 디젤 엔진의 실린더블록-라이너-가스킷-에드 구조물에 대한 해석 (An Analysis of Diesel Engine Cylinder Block-Liner-Gasket-Head Compound by Finite Element Method)

  • 김주연;안상호
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.147-158
    • /
    • 1997
  • This paper presents the analysis technique and procedure of main engine components-cylinder block, cylinder liners, gasket and cylinder head-using the finite element method, which aims to assess mainly the potential of lower oil consumption in a view point of engine design and to decide subsequently the accuracy of engine design which was done. The F.E. model of an engine section consisting of one whole cylinder and two adjacent half cylinders is used, whereby the crankcase is cut off at the block bottom deck. By means of a 3-dimensional F.E. model-including cylinder block, liners, gasket, cylinder head, bolts and valve seat rings as separate parts a linear analysis of deformations and stresses was performed for three different loading conditions;assembly, thermal and gas loads. For the analysis of thermal boundary conditions also the temperature field had to be evaluated in a subsequent step.

  • PDF

천연가스가 예혼합된 정적연소실에 파일럿오일을 분사한 복합연소현상 (Dual-Fuel Combustion Phenomena of Pilot Distillate Injected to Pre-mixed Natural Gas in a Constant Volume Combustion Bomb)

  • 최인수
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.112-122
    • /
    • 1995
  • As an alternative fuel producing less exhaust emissions, natural gas is of interest for use both in SI and CI engines. The potential of natural gas fuelled dual-fuel engine is considered high enough. However, much effort has to be made so that gaseous fuel is used efficiently with simultaneous minimum use of pilot oil. Hence, a simplified three-dimensional model, using a finite volume method in cylindrical coordinates, has been developed to facilitate an understanding of the dual-fuel combustion phenomena and to predict the complex interactions between the pilot distillate and natural gas. The computer model was calibrated by comparing it with the experimental results obtained from diesel engine like combustion bomb tests. In the pre-mixed natural gas combustion, the fuel burning was highly reliant on the injection condition and subsequent burning nature of the pilot distillate.

  • PDF