• Title/Summary/Keyword: Oil-water Separation

Search Result 132, Processing Time 0.017 seconds

Comparison of Hydrolysis from In Vitro Digestion Using Symmetric and Asymmetric Triacylglycerol Compounds by Enzymatic Interesterification (효소적으로 합성된 대칭형과 비대칭형 Triacylglycerol 혼합물의 In Vitro Digestion에서의 소화율 비교)

  • Woo, Jeong Min;Lee, Ki Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.842-853
    • /
    • 2014
  • For developing indigestible lipids, symmetric triacylglycerol (ST) and asymmetric triacylglycerol (AT) were produced by enzymatic interesterification using high oleic sunflower oil, palmitic ethyl ester, and stearic ethyl ester in a shaking water bath. Used enzymes were Lipozyme RMIM for ST and Lipozyme TLIM for AT. To remove ethyl ester from reactants, methanol fractionation (reactant : methanol=1:5, w/v, $25^{\circ}C$) and florisil separation (reactant : florisil=1:8, w/w) were applied. Acetone fractionation (reactant : acetone=1:9, w/v) was implemented to separate triacylglcerol (TAG) species into ST and AT. Fractions I (before fractionation), II (after fractionation, liquid phase) and III (after fractionation, solid phase) were separated from ST, whereas fractions IV (after 1st fractionation, liquid phase) and V (after 2nd fractionation, solid phase) were from AT. From sn-2 fatty acid composition analysis, the sum of palmitic acid (C16:0) and stearic acid (C18:0) was 4.9~6.5 area% in ST (I, II, III), and 41.9~43.9 area% in AT (IV, V). In vitro digestion was performed for 0, 15, 30, 60, and 120 minutes at $37^{\circ}C$ in a shaking water bath. For the digestion results, hydrolysis of V was only 40% compared to others (I, II, III, IV) at 120 minutes due to its melting point ($49^{\circ}C$). However, initially (15 minutes), hydrolysis (%) was as follows: V$32.5^{\circ}C$, $31.8^{\circ}C$) and different slip melting points ($31.3^{\circ}C$, $19.5^{\circ}C$). Even though IV has a lower TAG content composed of two saturated fatty acids than III, it had a similar melting point.

Optimization of Manufacturing Condition for Fried Garlic Flake and the Physicochemical Properties (튀긴 마늘 flake 제조조건의 최적화 및 이화학적 특성)

  • Kim, Kyeong-Yee;Lee, Eun-Kyung
    • Korean journal of food and cookery science
    • /
    • v.28 no.6
    • /
    • pp.805-811
    • /
    • 2012
  • This study was carried out in order to optimize the manufacturing condition of fried garlic flakes as well as to investigate the physicochemical properties of the flakes. Fried garlic flake samples were prepared as follows: garlic was sliced by a thickness of 1.5 mm, 2.0 mm, 2.5 mm, which were measured by a thickness gage. The samples were fried in vegetable oil under different temperatures of $140{\sim}150^{\circ}C$, $160{\sim}170^{\circ}C$ and $180{\sim}185^{\circ}C$. The compression strength depending on the height (h) was measured in order to find the thickness effect by the rheometer (force control: 50 N, h: 3.25 mm). Moreover, the sample with 1.5 mm thickness showed crisp phenomena of the split compared with the crush shape of the 2.0 mm and 2.5 mm thick samples. The result of strength for time dependence showed a sample with a thickness of 1.5 mm, which was measured 5~9 times more than the 2.0 mm and 2.5 mm thick samples. We thought the reason that the 1.5 mm sample had less response power equivalent to compression force than the other samples. Alliin has been found to affect the immune responses in the blood, it is a derivative of the amino acid cysteine and is also quite heat stable. The LC system with a UV detection at 210 nm consists of a separation on a Zorbax TMS column and isocratic elution with water and ACN as a mobile phase. The alliin contents of raw and fried garlic flake under $140{\sim}150^{\circ}C$, $160{\sim}170^{\circ}C$ and $180{\sim}185^{\circ}C$ were 18.10 mg/mL, 14.0 mg/mL, 11.6 mg/mL and 11.1 mg/mL, respectively. The decrement of alliin content under different temperature was a small quantity hence, we confirmed that the increasing manufacturing temperature was not affected by the alliin content. Examining for the particle structure of fried garlic flakes by a polarization microscope, the color of the sample treated at $160{\sim}170^{\circ}C$ was pure yellow. Furder, the fiber shaped particle, which has an effect on the tough texture, almost did not appear compared to the different temperature conditions. Finally, the sensory test for the preference of fried garlic flake under different conditions was carried out and the scores for various sensory characteristics were surveyed. According to the physicochemical measurements and sensory evaluation, we confirmed that the optimum manufacturing condition of fried garlic flake was 1.5 mm thick at a temperature of $160{\sim}170^{\circ}C$.