• Title/Summary/Keyword: Oil-in-water emulsion

Search Result 386, Processing Time 0.02 seconds

The Effect of Sea Water Containing Heavy Oil on RO Membrane (유탁해수의 RO막에 대한 영향)

  • Cho, Bong-Yeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • An experimental study regarding the effect of emulsions on RO is presented. Heavy oil was added to the sea water and the distilled water separately and treated for 30 minutes by a homogenizer to make emulsions. For the case of the sea water without heavy oil the permeate decreased from the beginning of the experiment. Chloride and conductivity increased with time, due to the fouling occurring as the suspended solids in the sea water accumulated on the membrane surface. Rejection rate of salt was 99.6~99.7%. As for the sea water containing heavy oil, the permeate decreased slowly from the beginning of the experiment. This result was the same for the case of the sea water only. However. chloride and conductivity increased significantly when heavy oil was added. In the second experiment with sea water containing heavy oil, the operation time of RO was reduced considerably. With addition of oil, the chloride increased greatly, while the permeate reduced comparatively. In the experiment where emulsion of $0.3{\sim}0.8mg/{\ell}$ was supplied to RO. oil concentration was about 10ppb in the permeate at the end of the experiment. In case of the distilled water containing heavy oil. the conductivity increased. However. the permeate reduced to 30% compared to the case of the sea water containing heavy oil. The case of sea water containing heavy oil showed an opposite result, but the effect of the addition of oil on RO was significant. Oil caused fouling of the RO and the contamination of the whole system, and as the result the system could not be operated properly. As a result the membrane capacity, the amount and water quality of permeate deteriorated significantly.

  • PDF

Development of W/O/W Multiple Emulsion Formulation Containing Burkholderia gladioli

  • KIM, HWA-JIN;CHO, YOUNG-HEE;BAE, EUN-KYUNG;SHIN, TAEK-SU;CHOI, SUNG-WON;CHOI, KEE-HYUN;PARK, JI-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • W/O/W (water-in-oil-in-water) type multiple emulsion was applied to improve the storage stability of an antagonistic microorganism, Burkholderia gladioli. Encapsulation of microorganism into a W/O/W emulsion was conducted by using a two-step emulsification method. W/O/W emulsion was prepared by the incorporation of B. gladioli into rapeseed oil and the addition of polyglycerin polyriconolate (PGPR) and castor oil polyoxyethylene (COG 25) as the primary and secondary emulsifier, respectively. Microcrystalline cellulose was used as an emulsion stabilizer. To evaluate the usefulness of W/O/W emulsion formulation as a microbial pesticide for controlling the bacterial wilt pathogen (Ralstonia solanacearum), the storage stability and antagonistic activity of emulsion formulation were tested in vitro. The storage stability test revealed that the viability of formulated cells in emulsion was higher than that of unformulated cells in culture broth. At $4^{\circ}C$, the viabilities of formulated cells and unformulated cells at the end of 20 weeks decreased to about 2 and 5 log cycles, respectively. At $37^{\circ}C$, the viability of formulated cells decreased to only 2 log cycles at the end of storage. On the other hand, the viable cells in culture broth were not detected after 13 weeks. In activity test, formulated cells in emulsion were more effective in inhibiting the growth of pathogen than unformulated cells in culture broth. Unformulated cells completely lost their antagonistic activity during storage under similar conditions. The W/O/W multiple emulsion formulation was shown to be useful as the novel liquid formulation for biological control.

Combustion Characteristics of MDO and MDO Emulsion in Automotive Diesel Engine (선박 디젤유 및 선박 디젤유 에멀젼을 이용한 자동차용 디젤엔진의 연소특성)

  • Park, Jin-Kyu;Oh, Jung-Mo;Kim, Hyung-Ik;Lee, Chang-Hee;Lee, Ki-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.945-951
    • /
    • 2012
  • A water emulsion fuel can be used to reduce soot and NOx emissions simultaneously because it has a lower combustion temperature and better fuel atomization owing to the evaporative latent heat and microexplosion of water. Moreover, it can be used without making special modifications to conventional diesel engines. Therefore, this fuel has attracted considerable research attention. In addition, lower-grade fuels are being considered for use in conventional engines because of an increase in oil prices. In this study, we investigated the combustion and exhaust characteristics of MDO (marine diesel oil), which has a lower grade than common diesel oil, and ME (MDO water emulsion) under various test conditions in an automotive diesel engine.

Stabilizing Technology of water-in-Oil Emulsification with Quaternium-18 Hectorite by Gelling Action (겔 작용에 의한 쿼터늄-18 헥토라이트를 사용한 Water-in-Oil 에멀젼의 안정화 기술)

  • 김인영;조춘구;이주동
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.1
    • /
    • pp.135-150
    • /
    • 2003
  • This study is described the stabilizing technology of water-in-oil (w/o) emulsion and the mechanism of emulsification with quaternium-18 hectorite (Q-18 HTRT) by swelling action. When Q-18 HTRT is dispersed in oil, it swells and constructs card-house structure adding ethanol, and formation of water phase is caused by hydrogen bonding. The gelling activities of Q-18 HTRT were excellent such as mineral oil, squalane, cetostearyl isononanoate, isostearic acid, cetyl octanoate, octyl dodecanol and so on. Especially, when oil gel containing Q-18 HTRT passed one to three times by Roll mill. It made the W/O emulsion cream (W/O-ECRM) having 2.0 w/w% of Q-18 HTRT and also produced the control sample (control) including 3.0 w/w% of cetyl PEG/PPG- l0/l dimethicone. The stability of after 24 weeks, Hardness of W/O-ECRM dropped 7.48%, whereas hardness of control went down 57 71%. As a result of these test emulsification of W/O-ECRM is superior compared with control. In cosmetic, 0-18 HTRT can use as suspending agent, oil adsorbent, emulsifying agent, dispersing agent, viscosifier and pigment.

Ostwald Ripening in Hydrogenated Lecithin-stabilized Oil-in-Water Nano-emulsions (수첨 레시틴으로 안정화된 오일/물 나노에멀젼에서의 Ostwald Ripening)

  • Cho, Wan-Goo;Yang, Hee-Jung;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • Formation of oil-in-water nano-emulsions has been studied in oil/hydrogenated lecithin/water systems by two shear different instrument. The influence of surfactant concentration on nano-emulsion droplet size and stability has been studied. Droplet size was determined by dynamic light scattering, and nano-emulsion stability was evaluated by measuring the variation of droplet size as a function of time. The results obtained showed that the breakdown process of nano-emulsions studied could be attributed to Ostwald ripening. An increase of nano-emulsion instability with increase in surfactant concentration was found in the droplet size in the range of 100~200nm, however, an decrease of instability was found in the droplet size in the range of 300~400nm.

Emulsion Stability of Water/Oil Emulsified Fuel by associated with Emulsifiers (유화제 종류에 의한 Water/Oil 에멀젼 연료의 유화 안정성)

  • Kim, Moon-Chan;Lee, Chang-Suk;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.395-403
    • /
    • 2008
  • In this study, the characteristics of emulsified fuel were studied. The emulsified fuel which was composed of water and diesel was manufactured by using homogenizer and ultrasonic generator. The more the percentage of water contents increases, the more the density increases to the emulsified fuel. However, the viscosity increased in the 60% of water contents and decreased in the 70% of water contents because the O/W type was formed. The 3 minutes's ultrasonic waves during the irradiation time was appropriate of 16,000 rpm. And the energy density of ultrasonic waves was 87.5J/g. The emulsion stability has improved in the lower temperature, the lower percentage of water contents, and the most stable emulsion state was obtained from 20%(w/w) of water contents. Also, the emulsion stability was related to the HLB values of emulsifiers. Especially, the HLB values of emulsifier were appropriate from 4 to 7 values.

Quality Improvement in Fish Burger by Addition of Squid Viscera Oil (오징어 내장유를 이용한 어육버거의 품질개선)

  • Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.318-322
    • /
    • 1997
  • As an investigation for utilization of squid viscera oil as a food source, we attempted to improve a quality of fish burger by addition of emulsion curd formed from gelatin, water and refined squid viscera oil. Judging from the results of peroxide value, brown pigment formation, color value of Hunter, jelly strength and sensory evaluation, the reasonable amount of emulsion curd for the improvement of a fish burger functionality was determined as 6% on the weight basis of the chopped mackerel meat. Total plate counts, volatile basic nitrogen and histamine contents in fish burger prepared by addition of 6% of emulsion curd were $6.2{\times}10^4\;CFU/g$, 19.0 mg/100 g, and 50.7 mg/100 g, respectively. It may be concluded, from the above results that the emulsion curd-added fish burger is a safe as a food commodity. The ratio of polyenes to saturates of emulsion curd-added mackerel burger was 1.13. By adding emulsion curd formed from gelatin, water and refined squid viscera oil, color in cross section, texture and lipid functionality of mackerel burger could be improved in part.

  • PDF

Physicochemical Properties of Soybean Curd Residue Powder by Different Soybean and Drying Methods (콩의 종류와 건조 방법에 따른 비지 분말의 이화학적 특성)

  • Eun Ji Kim;Hee Nam Jung
    • Journal of the Korean Society of Food Culture
    • /
    • v.38 no.5
    • /
    • pp.356-364
    • /
    • 2023
  • This study compared the physicochemical properties of soybean curd residue and black soybean curd residue produced by hot air-drying and freeze-drying. Regardless of drying method, the crude protein, crude ash, crude fiber contents, pH, L, a, b color values and water soluble index were higher in soybean curd residue, whereas total polyphenol contents and antioxidant activity were higher in black soybean curd residue. Significant differences in water absorption index, oil absorption capacity and emulsion activity were observed between soybean curd residue and black soybean curd residue in freeze-drying. On the other hand, the emulsion stability was not significant difference in both hot-air drying and freeze-drying. The crude protein and crude fiber contents of soybean curd residue were not significant difference between hot-air drying and freeze-drying. Freeze-drying resulted in higher crude ash contents, pH, water absorption index, water soluble index, oil absorption capacity, emulsion activity and emulsion stability than hot-air drying. Hot-air drying have caused significantly higher water contents, water activity, total polyphenol contents and antioxidant activity in soybean curd residue than freeze-drying. In conclusion, soybean type and drying methods affect the physicochemical and quality characteristics of soybean curd residue, which could be important factors in the manufacture of processed foods.

Emulsion rheology and properties of polymerized high internal phase emulsions

  • Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.183-189
    • /
    • 2006
  • High internal phase emulsions are highly concentrated emulsion systems consisting of a large volume of dispersed phase above 0.74. The rheological properties of high internal phase water-in-oil emulsions were measured conducting steady shear, oscillatory shear and creep/recovery experiments. It was found that the yield stress is inversely proportional to the drop size with the exponent of values between 1 and 2. Since the oil phase contains monomeric species, microcellular foams can easily be prepared from high internal phase emulsions. In this study, the microcellular foams combining a couple of thickeners into the conventional formulation of styrene and water system were investigated to understand the effect of viscosity ratio on cell size. Cell size variation on thickener concentration could be explained by a dimensional analysis between the capillary number and the viscosity ratio. Compression properties of foam are important end use properties in many practical applications. Crush strength and Young's modulus of microcellular foams polymerized from high internal phase emulsions were measured and compared from compression tests. Of the foams tested in this study, the foam prepared from the organoclay having reactive group as an oil phase thickener showed outstanding compression properties.

Comparison of Emulsion-stabilizing Property between Sodium Caseinate and Whey Protein Concentrate: Susceptibility to Changes in Protein Concentration and pH

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.610-617
    • /
    • 2009
  • The stability of corn oil-in-water emulsions coated by milk proteins, sodium caseinate (CAS), or whey protein concentrate (WPC), was compared under the environmental stress of pH change. Emulsions were prepared at 0.1 of protein:oil because the majority of droplets were relatively small ($d_{32}=0.34$ and $0.35\;{\mu}m$, $d_{43}=0.65$ and $0.37\;{\mu}m$ for CAS- and WPC-emulsions, respectively) and there was no evidence of depletion flocculation. As the pH of the emulsions was gradually dropped from 7 to 3, there was no significant difference in the electrical charges of the emulsion droplets between the 2 types of emulsions. However, laser diffraction measurements, microscopy measurements, and creaming stability test indicated that WPC-emulsions were more stable to droplet aggregation than CAS-emulsions under the same circumstance of pH change. It implies that factors other than electrostatic repulsion should contribute to the different magnitude of response to pH change.