• 제목/요약/키워드: Oil-in-water emulsion

검색결과 386건 처리시간 0.043초

비이온성 혼합계면활성제를 이용한 O/W 유화액의 제조 : CCD-RSM을 이용한 최적화 (Emulsification of O/W Emulsion Using Non-ionic Mixed Surfactant: Optimization Using CCD-RSM)

  • 이승범;리광종;줘청량;홍인권
    • 공업화학
    • /
    • 제30권5호
    • /
    • pp.606-614
    • /
    • 2019
  • 본 연구에서는 palm oil과 서로 다른 HLB (hydrophile-lipophilie balance) value를 갖는 Tween-Span계 비이온성 계면활성제를 혼합하여 O/W (oil in water) 유화액을 제조하고, 유화액의 유화안정성을 향상시키기 위한 최적 유화조건을 결정하였다. 이를 위해 CCD-RSM (central composite design model-response surface methodology)을 이용하여 각 계량인자의 주효과 및 교호효과를 해석하였으며, 두 가지 반응치를 동시에 만족하는 최적조건을 결정하였다. CCD-RSM의 계량인자로는 유화시간, 유화속도, HLB value, 계면활성제의 첨가량 등을 설정하고, 반응치로는 O/W 유화액의 점도와 평균액적크기를 설정하였다. CCD-RSM 최적화 분석결과 반응치인 O/W 유화액이 점도와 평균액적크기의 목표치를 동시에 부합하는 최적조건은 유화시간(12.7 min), 유화속도(5,551 rpm), HLB value (8.0), 계면활성제의 첨가량(5.7 wt.%)으로 산출되었으며, 이 조건에서의 CCD-RSM 예측결과는 점도(1,551 cP)와 평균액적크기(432 nm)이었다. 이 조건의 실제 실험 결과 오차율은 2.5% 이하로 나타나 O/W 유화액 제조과정에 CCD-RSM 최적화 분석을 적용할 경우 비교적 높은 유의수준의 만족하는 결과를 얻을 수 있었다.

점착 유층과 계면활성제 액적의 충돌에 의한 에멀젼 형성 (Generation of emulsions due to the impact of surfactant-laden droplet on a viscous oil layer on water)

  • 이동훈;김도형;김일두;이진기
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.10-18
    • /
    • 2022
  • We present an experimental investigation on emulsions created during the impact process between a surfactant-laden droplet and an oil layer on water. By varying the surfactant concentration and the viscosity of oil layer, we created emulsions and visualized them using multi-dimensional high-speed imaging. Our analysis shows that the emulsions are more likely to be unstable and decay within a minute if the impacting droplet contains more surfactant. We also found that there are three mechanisms of generation of emulsions depending on the concentration of surfactant and the viscosity of oil layer; the jet pinch-off, cavity pinch-off, and tearing of oil layer. Jet and cavity pinch-off turned out to be dominant mechanisms for high oil viscosities, while tearing of oil layer is dominant for low oil viscosities. Our result is potentially useful in designing optimal dispersant properties for offshore oil contamination.

비타민나무 잎 추출물의 피부 흡수 증진을 위한 나노에멀젼 연구 (A Study on Nano-emulsion for Enhanced Transdermal Delivery of Hippophae rhamnoides Leaf Extract)

  • 채교영;권순식;박수남
    • 공업화학
    • /
    • 제24권3호
    • /
    • pp.260-265
    • /
    • 2013
  • 본 연구에서는 비타민나무 잎 추출물의 에틸아세테이트 분획 0.01, 0.03, 0.05, 0.10% 함유한 나노에멀젼을 제조하였고, 5주 동안 이들 나노에멀젼의 입자 크기, 입도분포 및 피부 투과능을 평가하였다. 나노에멀젼은 균질기(homogenizer) 처리 후 고압유화기(micro-fluidizer)를 이용하여 제조하였다. 비타민나무 잎 추출물의 에틸아세테이트 분획을 함유한 나노에멀젼은 단분산 형태를 나타내었다. 5주 동안 실험에서, 0.03% 에틸아세테이트 분획을 함유한 나노에멀젼이 가장 안정하였다. 0.03% 에틸아세테이트 분획 함유 나노에멀젼의 in vitro 피부 투과 실험을 Franz diffusion cell을 이용하여 수행하였다. Oil-in-water (O/W) 에멀젼과 비교할 때 나노에멀젼이 피부 흡수가 더 잘되는 것으로 나타났다. 이러한 결과들은 비타민나무 잎 추출물을 함유한 나노에멀젼이 O/W 에멀젼보다 안정성과 피부 투과능이 우수함을 나타낸다.

방부살균제에 의한 유화형화장품에서의 Staplylococcus aureus의 성장억제 (The Growth Inhibition of Staplylococcus aureus in Emulsion Type Cosmetics with Antiseptics)

  • 류미숙;김장규;원성호;김남기
    • 한국안전학회지
    • /
    • 제7권3호
    • /
    • pp.22-29
    • /
    • 1992
  • Emulsion-type cometics contain many kinds of carbon and energy source i.e., vegetable oil, mineral oil and carbohydrate etc., those can be used as nutrients and caused contamination by microbials. Thereby we have to keep cosmetics from the possibility of contamination by microbials. From this viewpoint, the purpose of this study is to get the data necessary not only to prevent dermatopathia occurred by microbials but also to sustain the quality. In this experiment, we observed how many Staphylococcus aureus were grown in the prepared cosmetics with or without antiseptics so as to prevent contamination. When the contamination proceed, the stability of phase was disturbed and creaming phenomina was happened with some discoloration and bad smell. About 40 days after, the pH was changed from 7.6 to 6.5 and the refractive index of cosmetic raw materials were changed from 1.4415 to 1.4490(water : oil=70:30). By adding antiseptics Into prepared cosmetics, the number of Staphylococcus aureus with challenge test method were decreased to 7$\times$103 cell/ml. For the antibacterial effect against Staphylococcus aureus, p-hydroxy benzoic acid propyl ester in phosphoric acid buffer solution was the best.

  • PDF

다양한 분체를 이용한 W/O와 O/W 형 에멀젼의 안정화 (Stability of W/O and O/W Type Emulsions by Various Solid Particles)

  • 이상길;김영호;표형배;이동규
    • 한국응용과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.353-360
    • /
    • 2010
  • This study was carried out to investigate the possibility of solid particles as a stabilizing agent instead of surfactant for preparing emulsions in the cosmetics. The type of emulsions stabilized by solid particles was dependent on wettability of the particles for water and oil. The optimal conditions of emulsions stabilized by solid particles were determined with ratio of water and oil phase, polarity of oils and amount of stabilizers. In the foundation appling the optimal condition of emulsions stabilized by solid particles without surfactant, the stable emulsion type foundation was successfully prepared. As a result, this work indicates that emulsions stabilized by solid particles can be applied to make-up cosmetics.

Effect of Coating Method on the Survival Rate of L. plantarum for Chicken Feed

  • Lee, Sang-Yoon;Jo, Yeon-Ji;Choi, Mi-Jung;Lee, Boo-Yong;Han, Jong-Kwon;Lim, Jae Kag;Oh, Jae-Wook
    • 한국축산식품학회지
    • /
    • 제34권2호
    • /
    • pp.230-237
    • /
    • 2014
  • This study was designed to find the most suitable method and wall material for microencapsulation of the Lactobacillus plantarum to maintain cell viability in different environmental conditions. To improve the stability of L. plantarum, we developed an encapsulation system of L. plantarum, using water-in-oil emulsion system. For the encapsulation of L. plantarum, corn starch and glyceryl monostearate were selected to form gel beads. Then 10% (w/v) of starch was gelatinized by autoclaving to transit gel state, and cooled down at $60^{\circ}C$ and mixed with L. plantarum to encapsulate it. The encapsulated L. plantarum was tested for the tolerance of acidic conditions at different temperatures to investigate the encapsulation ability. The study indicated that the survival rate of the microencapsulated cells in starch matrix was significantly higher than that of free cells in low pH conditions with relatively higher temperature. The results showed that corn starch as a wall material and glycerol monostearate as a gelling agent in encapsulation could play a role in the viability of lactic acid bacteria in extreme conditions. Using the current study, it would be possible to formulate a new water-in-oil system as applied in the protection of L. plantarum from the gastric conditions for the encapsulation system used in chicken feed industry.

Scale- Up of Water-Oil Hydrolysis System

  • Hur, Byung-Ki;Kim, Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권6호
    • /
    • pp.773-777
    • /
    • 1999
  • Scale-up experiments for hydrolysis of beef tallow, fat, and palm kernel with lipase derived from Candida cylindracea were carried out in 1-1, 100-1, and 10,000-1 reactors. The optimum agitation speed for the hydrolysis of the 1-1 reactor was investigated and found to be 350rpm, and this was a basis for the scale-up of agitation speed. The hydrolysis system in this work was the oil-water system in which the hydrolysis seems to process a heterogeneous reaction. An emulsion condition was the most important factor for determining the reaction rate of hydrolysis. Therefore, the scale-up of agitation speed was performed by using the power n = 1/3 in an equation of the rules of thumb method. The geometrical similarity for scaling-up turned out to be unsatisfactory in this study. Thus, the working volume per one agitator was used for the scale-up. In the case of scale-up from a 1-1 reactor to a 100-1 reactor, the hydrolysis of palm kernel was very much scaled-up by initiating the rules of thumb method. However, the hydrolysis of fat and beef tallow in a 100-1 reactor was a little higher than that of the 1-1 reactor because of the difference of geometrical similarity. The scale-up of hydrolysis from the 100-1 reactor to the 10,000-1 reactor was improved compared to that of the 1-1 to 100-1 reactor. The present results indicated that the scale-up of hydrolysis in the oil-water system by the rules of thumb method was more satisfactory under the condition of geometrical similarity. Even in the case where geometrical similarity was not satisfactory, the working volume per one agitator could be used for the scale-up of a heterogeneous enzyme reaction.

  • PDF

피부 미백제를 함유한 안정한 o/w 나노에멀젼의 융복합형 화장품 이용 (Application of Stable o/w Nanoemulsions with Skin Depigmenting Agent for Integration Type of Cosmetics)

  • 조완구
    • 디지털융복합연구
    • /
    • 제13권4호
    • /
    • pp.417-423
    • /
    • 2015
  • 정제수/Span 80-Tween 80/화장품용 피부 미백제 계에서 PIC 방법을 이용하여 o/w 나노에멀젼을 제조하였다. 제조 온도를 30 oC에서 80 oC로 상승시킴에 따라 제조된 나노에멀젼의 입경은 150 nm에서 40 nm로 감소하여 나노에멀젼을 형성하였다. 혼합 계면활성제의 HLB를 변화함에 따라 13.0~14.0 부근에서 가장 작은 입경을 형성하는 최적 HLB가 존재하였다. 오일/유화제의 비율이 증가하면 에멀젼의 입자 크기가 증가하였다. $f{\leq}0.15$ 조건에서 나노에멀젼의 크기 분포는 2 개월 이상 일정하게 유지 되었다. 제조 온도의 증가는 단 분산 나노에멀젼의 제조를 가능하게 하였다. 나노에멀젼이 생성되면, Ostwald ripening에 대한 안정성은 연속 상에서 화장품용 피부 미백제의 매우 낮은 용해도로 인해 안정하였다.

현탁된 고형지질나노입자 내로 친수성 약물의 봉입률을 증대시키기 위한 w/o/w 에멀션 가온용융유화법의 평가 (A Hot Melt w/o/w Emulsion Technique Suitable for Improved Loading of Hydrophilic Drugs into Solid Lipid Nanoparticles)

  • 이병무;최성업;이재휘;최영욱
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권1호
    • /
    • pp.33-38
    • /
    • 2005
  • Recently increasing attention has been focused on solid lipid nanoparticles (SLN) as a parenteral drug carrier due to its numerous advantages that can come from both polymeric particle and fat emulsions, together with the possibility of controlled release and increasing drug stability. Lipophilic drugs such as paclitaxel, cyclosporin A, and all-trans retinoic acid have been successfully entrapped in SLN but the incorporation of hydrophilic drugs in SLN is very limited because of their very low affinity to the lipid. Therefore, as a new approach to improve the loading of hydrophilic drugs, a w/o/w emulsion technique has been developed. The primary objective of the current study was to improve the loading efficiency of a model hydrophilic drug, glycine (Log P = -3.44) into SLN. The proposed preparation process is as follows: A heated aqueous phase consisting of 0.1 ml of glycine solution in water (100 mg/ml), and poloxamer 188 (5 mg) were then added to a molten oil phase containing precirol (100 mg) and lecithin (5 mg). This mixture was dispersed by sonicator, leading to a w/o emulsion. A double emulsion (w/o/w) was formed after the addition of 2% poloxamer solution to the above dispersed system. After cooling the double emulsion, solid lipid nanosuspensions were successfully formed. The lipid nanoparticles had the mean particle size of 441.25 nm, and the average zeta potential of -20.98 mV. The drug loading efficiency was measured to be 8.54% and the drug loading amount was measured to be 0.92%. The w/o/w emulsion method showed an increased loading efficiency compared to conventional o/w emulsion method.

Electrophoretic Mobility to Monitor Protein-Surfacant Interactions

  • Hong, Soon-Taek
    • Preventive Nutrition and Food Science
    • /
    • 제3권2호
    • /
    • pp.143-151
    • /
    • 1998
  • Protein -surfactant interactions have been investigate by measuring ζ-potential of $\beta$-lactoglobulin-coated emulsion droplets and $\beta$-lactoglobulin in solution in the rpesenceof surfactant, with particular emphasis on the effect of protein heat treatment(7$0^{\circ}C$, 30min). When ionic surfactant (SDS or DATEM) is added to the protein solution, the ζ-potential of the mixture is found to increase with increasing surfactant concentration, indicating surfactant binding to the protein molecules. For heat-denatured protein,it has been observed that the ζ-potential tends to be lower than that of the native protein. The effect of surfactant on emulsions is rather complicated .With SDS, small amounts of surfactant addition induce a sharp increase in zeta potential arising from the specific interaction of surfactant with protein. With further surfacant addition, there is a gradual reductio in the ζ-potential, presumably caused by the displacement of adsorped protein (and protein-surfactant complex) from the emulsion droplet surfac by the excess of SDS molecules. At even higher surfactant concentrations, the measured zeta potential appears to increase slightly, possibly due to the formation of a surfactant measured zeta potential appears to increase slightly, possibly due to the formation of surfactant micellar structure at the oil droplet surface. This behaviour contrastswith the results of the corresponding systems containing the anionic emulsifier DATEM, in which the ζ-potential of the system is found to increase continuously with R, particularly at very low surfactant concentration. Overall, such behaviour is consisten with a combination of complexation and competitive displacement between surfactant and protein occurring at the oil-water interface. In addition, it has also been found that above the CMC, there is a time-dependent increase in the negative ζ-potential of emulsion droplets in solutions of SDS, possibly due to the solublization of oil droplets into surfactant micelles in the aqueous bulk phase.

  • PDF