• Title/Summary/Keyword: Oil water separation

Search Result 129, Processing Time 0.036 seconds

Evaluation of Cleanness and Physical Properties of W/O Microemulsion (W/O Microemulsion 세정제의 물성 및 세정성 평가)

  • Lee, Myung Jin;Han, Ji Won;Lee, Ho Yeol;Han, Sang Won;Bae, Jae Heum;Park, Byeong Deog
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.769-777
    • /
    • 2002
  • Using four components - nonionic surfactants, water, hydrocarbon oil and an alcohol as cosurfactant, 12 types of cleaning agents were prepared, and their physical properties such as surface tension, viscosity, electroconductivity and phase stability were measured. As the formulated cleaning agents have low surface tensions(30.5-31.1 dyne/cm) and low viscosities (1.6-7.2 c.p.), they are satisfied with the general physical properties of water-in-oil(W/O) microemulsions for their industrial use. They showed a tendency that their temperature range for stable one-phase microemulsion decreased in accordance with the increase of alcohol/surfactant(A/S) ratio in the formulations. However, the temperature range of one-phase microemulsion was much more affected by hydrophilic lipophillic balance(HLB) value of the nonionic surfactant which increased its temperature range and it increased in accordance with the higher HLB value in the formulations. And the maximum content of water which can keep stable one-phase W/O microemulsion was measured at each sample. In addition, their temperature range for stable one-phase microemulsion was also measured. It was confirmed that the selection of surfactant type was very important for formulating a cleaning agent, since the W/O microemulsion system with the nonionic surfactant of the lower HLB value showed better cleaning efficacy that of the higher HLB value for abietic acid as a soil, which was used for preparing a rosin-type flux. In the formulated cleaning agents with the increase of A/S ratio in the formulations, however, there was no significant difference in cleaning efficacy. It was investigated that the differences of their cleaning efficacy was affected by the change of the condition of temperature and sonicating frequency as important factors in the industrial cleaning. That is, the higher, their cleaning temperature and the lower, their sonicating frequency, the more increased, their cleaning efficacy. Furthermore, using optical instruments like UV/Visable Spectrophotometer and FT-IR Spectrometer, their cleaning efficacy for abietic acid was measured. The removal of soil from the contaminated rinse water was measured by gravity separation method in the rinse bath. As a result, the cleaning agent system having the nonionic surfactant of HLB value 6.4 showed over 85% water-oil separation efficacy at over $25^{\circ}C$. Therefore, it was demonstrated in this work that the formulating cleaning agents were very effective for cleaning and economical in the possible introduction of water recycling system.

Advanced Treatment for Reuse of Oil Refinery Process Wastewater using UF/RO Processes (UF/RO 공정을 이용한 정유공장 방류수의 재활용을 위한 고도처리)

  • 이광현
    • Membrane Journal
    • /
    • v.10 no.4
    • /
    • pp.220-229
    • /
    • 2000
  • Deionized water and wastewater flux were discussed using module set 1-7 composed of ultrafiltration hollow fiber type modules and reverse osmosis spiral wound type modules. The separation characteristics of ultrafiltration and reverse osmosis membranes were discussed with the variation of applied pressure and temperature. Turbidity and SS were removed effectively from ultrafiltration mem¬brane, and removal efficiency of COD, T-N, and TDS using reverse osmosis membrane was very efficient. Permeate flux increased linearly with the increase of applied pressures and temperature. It was shown that ultrafiltration and reverse osmosis membranes were suitable Lo the advanced treatment and reuse of oil refinery process effluent.

  • PDF

A Study on stability of membrane in O/W/O emulsion liquid surfactant membrane separation (O/W/O 유화형 액막분리에 있어서 막의 안정성에 관한 연구)

  • Kim, Ju-Duck
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.22 no.1
    • /
    • pp.5-26
    • /
    • 1996
  • O/W/O(oil in water in oil)형 유화액막에 의한 2성분 탄화수소 혼합물인 toluene-cyclo hexane의 분리에 있어서 투과율, 막의 안정성과 분리계수에 미치는 영향을 계면활성제 농도, emulsion과 용매와의 교반속도 등을 변수로 하여 실험하였다. 계면활성제의 농도가 증가함에 따라 투과율은 증가하는데 0.5wt% 이상에서는 증가율이 둔화 되었다. 막 파괴율은 0.1wt%에서 가장 낮게 나타났으며, 그 이상에서는 농도가 증가하면서 파괴율도 증가하였다. 또한 분리계수는 계면활성제의 농도가 0.5wt%에서 가장 높게 나타났다. 에멀젼 제조 시 교반속도 변화에서는 투과율이나 막 파괴율에 큰 영향을 미치지 않는 것으로 나타났다. 막 강화제의 농도가 증가함에 따라 투과율은 감소하였고, 에멀젼과 용매의 접촉 시 교반속도가 증가 할수록 막 파괴율도 증가하였다.

  • PDF

The study on the separation characteristics of heavy metal ion by inorganic oxides and ion exchange resin (무기산화물 및 이온교환수지에 의한중금속 이온 분리특성 연구)

  • Dan, Cheol Ho;Kim, eong Ho;Yang, Hyun Soo
    • Clean Technology
    • /
    • v.12 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • The effectiveness of inorganic oxides (DT-30), anionic exchange resin (DT-60) and carbon absorbent (DT-80, DT-90) on the equilibrium and continuous separation characteristics and removal of cobalt, cesium and iodide ion in the waste water was investigated. As a result, DT-30, DT-80 or DT-90, and DT-60 showed excellent separation properties on the cesium, cobalt and iodide respectively. In the equilibrium experiment, the adsorption amount of cesium for DT-30 increased with temperature, but increasd largely with pH. In case of DT-80, adsorption of cobalt was depended on pH but was not influenced by temperature. In the continuous system by passing a heavy metal ion solution through the ion exchange tower, DT-30, DT-90 and DT-60 showed good separation characteristic for cesium, cobalt and iodide respectively. In this case, separation characterization of DT-30 on the cesium and of DT-60 on the iodide were better than that of DT-90 on the cobalt. From the experiment on the effect of impurities on the ion exchange characteristics, impurities such as surfactant and oil did not influence the efficiency of DT-90. In the mean while, ion separation capacity of DT-30 were decreased largely by impurities such as surfactant and oil. Also, surfactant had a strong influence on the effectiveness of DT-60. Accordingly, it turned out to be very important thing that impurities should be removed in the preprocessing stage.

  • PDF

Effect of surfactant types in aqueous cleaning agents on their physical properties, cleaning ability and oil-water separation (수계세정제의 계면활성제 종류에 따른 물성, 세정성 및 유수분리 영향 연구)

  • Park, S. W.;Cha, A. J.;Kim, H. T.;Kim, H. S.;Bae, J. H.
    • Clean Technology
    • /
    • v.9 no.1
    • /
    • pp.9-21
    • /
    • 2003
  • CFC-113 and 1,1,1-TCE which are ozone destruction substances are not used any more in the advanced countries because of Montreal protocol. MC and TCE are now used restrictively at small part of industrial fields in most of countries since they are known to be hazardous or carcinogenic materials. Thus, it is indispensible that the alternative cleaning agents which are environmental-friendly and safe, and show good cleaning ability should be developed or utilized for replacement of the halogenated cleaning agents. Aqueous cleaning agents are evaluated to be promising alternative ones among various alternatives in environmental and economical view point. This study has been carried out as a part of development program of aqueous cleaning agent. First of all, several types of surfactants which are the most important component in aqueous cleaning agents were chosen, and the physical properties, foaming ability, cleaning ability and oil-water separation efficiency of their aqueous solutions were measured and compared for selection of proper type of surfactant in aqueous cleaning agents.

  • PDF

Pumpkin Seed Oil as a Partial Animal Fat Replacer in Bologna-type Sausages

  • Uzlasir, Turkan;Aktas, Nesimi;Gercekaslan, Kamil Emre
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.551-562
    • /
    • 2020
  • Beef fat was replaced with cold press pumpkin seed oil (PSO; 0%, 5%, 15%, and 20%) in the production of bologna-type sausages. A value of pH, water-holding capacity (WHC), jelly-fat separation, emulsion stability and viscosity values were determined in meat batters. Thiobarbituric acid reactive substances (TBARS), color, and textural characteristics (TPA, shear test, penetration test) were determined in end-product at 1, 7, 14, 21, and 28 days of storage at 4℃. The pH values were varied between 6.06 and 6.08. With the increase in the level of PSO in meat batters, there was a significant increase in WHC, jelly-fat separation and viscosity values (p<0.05) while a significant decrease in emulsion stability (p<0.05). TBARS values of sausages were found to be significantly higher than in the control group (p<0.05), and this trend continued during storage. Increasing of PSO level were caused a significant increase in L* and b* values while a decrease in a* value (p<0.05). Hardness, adhesiveness and chewiness values were significantly reduced whereas cohesiveness and resilience values increased (p<0.05). Maximum shear force and work of shear was significantly decreased as the level of PSO increased (p<0.05). Hardness, work of penetration and the resistance during the withdrawal of the probe values (penetration tests) increased significantly with the increase in the level of PSO (p<0.05). These results indicate that PSO has potential to be use as a replacement of animal-based fats in the production of bologna-type sausages.

Remediation of Contaminated Soil with Organic Contaminants using Microemulsion (마이크로이멀젼을 이용한 유기오염물로 오염된 지반의 정화)

  • Park, Ki-Hong;Kwon, Oh-Jung;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.597-604
    • /
    • 2003
  • In the soil washing process, the contaminants are usually removed by abrasion from soil particles using mechanical energy and water However, organic contaminants with low water solubility like polycyclic aromatic hydrocarbons (PAH) are remained on soil particles. Previous studies have shown that surfactant possessing amphipathic activity enhances the solubility of organic materials. For this reason solutions with surfactants have been used to improve removal of organic contaminants on soil washing process. But, in this manner, many problems were found like complete loss of surfactants and additional contamination by surfactant. The remediation method using microemulsion has been introduced to overcome these disadvantages. In this case, surfactants are recycled by phase separation of microemulsion after remediation. In microemulsion process, the surfactant will be recycled by phase separation of the microemulsion into a surfactant-rich aqueous phase and an oil phase after extraction. That is why remediation concept applying microemulsion as washing media has been Introduced. Suitable microemulsion have to be used in order to have the chance of refilling the soil after decontamination and to avoid any risk due to toxicity. The purpose of this research is to evaluate effect of microemulsion to remediation of contaminated soil. We performed test with various organic contaminants like Pyrene and BTEX, also compared efficiency of remediation in microemulsion process with soil washing

  • PDF

Roles of Fucoidan, an Anionic Sulfated Polysaccharide on BSA-Stabilized Oil-in-Water Emulsion

  • Kim, Do-Yeong;Shin, Weon-Sun
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.128-132
    • /
    • 2009
  • Fucoidan, a sulfated polysaccharide derived from brown seaweed, is an important material valued for its various biological functions, including anti-coagulation, anti-aging, and immune system support. In this study, we examined the potential of fucoidan as a novel emulsifying agent in BSA (bovine serum albumin)-stabilized emulsion at a neutral pH. We measured the dispersed oil-droplet size, surface zeta-potential and creaming formation of 0.5 wt% BSA emulsion (20 wt% oil traction) in the absence and presence of fucoidan. The average particle size and zeta-potential value were 625.4 nm and -30.91 mV in only BSA-stabilized emulsion and 745.2 nm and -44.2 mV in 1.0 wt% fucoidan-added BSA emulsion, respectively. This result suggested that some positive charges of the BSA molecules interacted with the negative charges of fucoidan to inhibit the flocculation among the oil droplets. The creaming rate calculated from the backscattering data measured by Turbiscan dramatically decreased in 1.0 wt% fucoidan-added BSA emulsion during storage. Accordingly, the repulsion forces induced among the oil particles coated with 1.0 wt% fucoidan in emulsion solution resulted in significantly increased emulsion stability. The turbidity of the BSA-stabilized emulsion at 500 nm decreased during five days of storage. However, the fucoidan-added BSA emulsion exhibited a higher value of turbidity than the BSA-stabilized emulsion did. In conclusion, an anionic sulfated fucoidan lowered the surface zeta-potential of BSA-coated oil droplets via the electrostatic interaction, and subsequently inhibited the flocculation among the oil droplets, thereby clearly minimizing the creaming and phase separation of the emulsion.

Recent Water Treatment Technology for Unconventional Natural Resource Development (비전통자원개발에 따른 수처리 최신 기술)

  • Kim, Geug Tae;Chung, Kun Yong;Park, Jung Kyu
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.154-165
    • /
    • 2014
  • Development of unconventional natural resources such as shale gas, shale oil and coal bed methane, has been activated and improved the productivity due to the recent technology advance in horizontal drilling and hydraulic fracturing. However, the flowback water mixed with chemical additives, and the brine water containing oil, gas, high levels of salts and radioactive metals is produced during the gas production. Potential negative environmental impact due to large volumes of the produced wastewater is increasingly seen as the major obstacles to the unconventional natural resource development. In this study an integrated framework for the flowback and brine water treatment is proposed, and we reviewed the upcoming state of the art technology in water treatment. Basic separation processes which include not only membrane, evaporation, crystallization and desalination processes, but the potential water reuse and recycling techniques can be applied for the unconventional natural resource industry.

Demulsification of Oil-Water Emulsions Using Different Microwave Irradiation Mode (마이크로파 조사 방식에 의한 Oil-Water 에멀젼 분리)

  • Hong, Joo-Hee;Kim, Byoung-Sik;Kim, Dok-Chan
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.653-659
    • /
    • 2005
  • When emulsion is irradiated by a microwave, the energy absorbed by the emulsion is proportional to irradiation time. In case of a long exposure, the temperature of emulsion rises, its viscosity decrease, and subsequently increase the rate of demulsification. In this work, in order to improve demulsification rate, the studies on demusification and the Sauter mean diameter ($D_{32}$) for each microwaved emulsion with different irradiation mode(continuous, pulsative, and periodical irradiation) have been carried out. When the 30% W/O emulsion (sample #1) was irradiated for 600 sec and settled for 24 h, oil recovery rates from continuous, pulsative, and periodical microwave irradiation were 60.0%, 62.3%, and 96.2%, and the amounts of separated water were 26.5%, 35.0%, and 93.9%, respectively. Also, the Sauter mean diameters ($D_{32}$) were $47.183{\mu}m$, $111.547{\mu}m$, and $220.476{\mu}m$, respectively.