• Title/Summary/Keyword: Oil flow

Search Result 1,068, Processing Time 0.027 seconds

THD Analysis of a Surface Textured Parallel Thrust Bearing: Effect of Dimple Radius and Depth (Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 딤플 반경과 깊이의 영향)

  • Jeong, YoHan;Park, TaeJo
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.303-310
    • /
    • 2014
  • In order to reduce friction and improve reliability, researchers have applied various surface texturing methods to highly sliding machine elements such as mechanical seals and piston rings. Despite extensive theoretical research on surface texturing, previous numerical results are only applicable to isothermal and iso-viscous conditions. Because the lubricant flow pattern of textured bearing surfaces is much more complicated than that for non-textured bearings, the Navier?Stokes equation is more suitable than the Reynolds equation for the former. This study carries out a thermohydrodynamic (THD) lubrication analysis to investigate the lubrication characteristics of a single micro-dimpled parallel thrust bearing cell. The analysis involves using the continuity, Navier?Stokes, energy, temperature?viscosity relation, and heat conduction equations with the commercial computational fluid dynamics (CFD) code FLUENT. This study discretizes these equations using the finite volume method and solves them using the SIMPLE algorithm. The results include finding the streamlines, pressure and temperature distributions, and variations in the friction force and leakage for various dimple radii and depths. Increasing the dimple radius and decreasing the depth causes a recirculation flow to form because of a strong vortex, and the oil temperature greatly increases compared with the non-textured case. The present numerical scheme and results are applicable to THD analysis of various surface-textured sliding bearings and can lead to further study.

Coalescence behavior of dispersed domains in binary immiscible fluid mixtures having bimodal size distributions under steady shear flow

  • Takahashi Yoshiaki;Kato Tsuyoshi
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.3
    • /
    • pp.125-130
    • /
    • 2005
  • Coalescence process of binary immiscible fluid mixtures having bimodal size distributions, prepared by mixing two pre-sheared samples at different shear rates, ${\gamma}_{pre1}\;and\;{\gamma}_{pre2}$, under shear flow at a final shear rate, ${\gamma}_f$, are examined by transient shear stress measurements and microscopic observations in comparison with the results for simply pre-sheared samples having narrow size distributions (unimodal distribution samples). Component fluids are a silicone oil (PDMS) and a hydrocarbon-formaldehyde resin (Genelite) and their viscosities are 14.1 and 21.0 $pa{\cdot}sec$ at room temperature $(ca.\;20^{\circ}C)$, respectively. The weight ratio of PDMS: Genelite was 7:3. Three cases, $({\gamma}_{pre1}=7.2sec^{-1},\;{\gamma}_{pre2}=12.0sec^{-1}\;and\;{\gamma}_f=2.4sec^{-1}),\;({\gamma}_{pre1}=0.8sec^{-1},\;{\gamma}_{pre2}=4.0sec^{-1}\;and\;{\gamma}_f=2.4sec^{-1}),\;and\;({\gamma}_{pre1}=7.2sec^{-1},\;{\gamma}_{pre2}=12.0^sec^{-1}\;and\;{\gamma}_f=7.2sec^{-1})$ the first case, transient shear stress did not show any significant difference but domains larger than the initial state are observed at short times. In the latter cases, there exist undershoot of shear stress, reflecting existence of deformed large domains, which is confirmed by the direct observation. It is concluded that coalescence between large and small domains more frequently occur than coalescence between the domains with similar size in the bimodal distribution samples.

Effect of Film-Temperature Boundary Conditions on the Lubrication Performance of Parallel Slider Bearing (유막온도경계조건이 평행 슬라이더 베어링의 윤활성능에 미치는 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.207-213
    • /
    • 2017
  • In sliding bearings, viscous friction due to high shear acting on the bearing surface raises the oil temperature. One of the mechanisms responsible for generating the load-carrying capacity in parallel surfaces is known as the viscosity wedge effect. In this paper, we investigate the effect of film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of parallel slider bearings. For this purpose, the continuity equation, Navier-Stokes equation, and the energy equation with temperature-viscosity-density relations are numerically analyzed using the commercial computational fluid dynamics (CFD) code FLUENT. Two different film-temperature boundary conditions are adopted to investigate the pressure generation mechanism. The temperature and viscosity distributions in the film thickness and flow directions were obtained, and the factors related to the pressure generation in the equation of motion were examined in detail. It was confirmed that the temperature gradients in the film and flow directions contribute heavily to the thermal wedge effect, due to which parallel slider bearing can not only support a considerable load but also reduce the frictional force, and its effect is significantly changed with the film-temperature boundary conditions. The present results can be used as basic data for THD analysis of surface-textured sliding bearings; however, further studies on various film-temperature boundary conditions are required.

Preparation of Storage-Stable Liquid Dyes by Membrane Separation Technology (막분리 기술을 위한 액체염료 제조에 관한 연구)

  • Cho, Jung Hee;Lee, Chung Hak
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.349-359
    • /
    • 1992
  • Studies were carried out on the selective removal of inorganic salts such as NaCl and $Na_2SO_4$ from dye solution, using counter diffusion-reverse osmosis and nanofiltration, respectivey. For the dye solution used in the experiments, 1 to 30% of salts were removed by counter diffusion while the loss of dye molecules was less than 0.3%. The separation factors by one pass operation were 10-500 according to ionic species. In five successive operations, removals of anion($Cl^-$) increased but those of cation($Na^+$) decreased due to the Donnan effect. Effects of feed flow rate on removal efficiencies of various ions were also observed at constant flow rate of stripping water. Reverse osmosis of desalted dye solution by counter diffusion was conducted to prepare highly concentrated liquid dyes. The rejection efficiency of dye molecules was greater than 99%. For the rejection efficiency of chloride ion, experimental values were compared with theoretical ones based on solution-diffusion model. Two stage diafiltration was performed in nanofiltration. The rejection efficiency of chloride ion was continuously decreased due to the Donnan dialysis and even negative rejection was observed. The Donnan effect was more pronounced in the second diafiltration.

  • PDF

Numerical Simulation of Catalyst Regeneration Process for Desulfurization Reactor (수치해석을 통한 탈황반응기용 촉매의 재생공정 분석)

  • Choi, Chang Yong;Kwon, Sang Gu;Liu, Jay;Im, Do Jin
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.140-147
    • /
    • 2017
  • In this study, we performed numerical simulation for the catalyst regeneration process of diesel desulfurization reactor. We analyzed the changes in regeneration process according to purge gas flow rate, catalyst permeability, reactor size, and heat loss of reactor. We have found that the regeneration process is very much affected by temperature changes whereas it is hardly affected by catalyst permeability and porosity. We also estimated the regeneration time according to purge gas flow rate and initial temperatures and have found that increasing purge gas temperature is more effect for fast regeneration. The present results can be utilized to design a regeneration process of diesel desulfurization reactor for a fuel cell used in ships. Furthermore, the present work also can be used to design low sulfur diesel supply in oil refineries and therefore contribute to the development of clean petrochemical technology.

S Phase Cell Cycle Arrest and Apoptosis is Induced by Eugenol in G361 Human Melanoma Cells

  • Rachoi, Byul-Bo;Shin, Sang-Hun;Kim, Uk-Kyu;Hong, Jin-Woo;Kim, Gyoo-Cheon
    • International Journal of Oral Biology
    • /
    • v.36 no.3
    • /
    • pp.129-134
    • /
    • 2011
  • Eugenol is an essential oil found in cloves and cinnamon that is used widely in perfumes. However, the significant anesthetic and sedative effects of this compound have led to its use also in dental procedures. Recently, it was reported that eugenol induces apoptosis in several cancer cell types but the mechanism underlying this effect has remained unknown. In our current study, we examined whether the cytotoxic effects of eugenol upon human melanoma G361 cells are associated with cell cycle arrest and apoptosis using a range of methods including an XTT assay, Hoechst staining, immunocyto-chemistry, western blotting and flow cytometry. Eugenol treatment was found to decrease the viability of the G361 cells in both a time- and dose-dependent manner. The induction of apoptosis in eugenol-treated G361 cells was confirmed by the appearance of nuclear condensation, the release of both cytochrome c and AIF into the cytosol, the cleavage of PARP and DFF45, and the downregulation of procaspase-3 and -9. With regard to cell cycle arrest, a time-dependent decrease in cyclin A, cyclin D3, cyclin E, cdk2, cdk4, and cdc2 expression was observed in the cells after eugenol treatment. Flow cytometry using a FACScan further demonstrated that eugenol induces a cell cycle arrest at S phase. Our results thus suggest that the inhibition of G361 cell proliferation by eugenol is the result of an apoptotic response and an S phase arrest that is linked to the decreased expression of key cell cycle-related molecules.

Characteristics of Washed-off Pollutants and Dynamic EMCs in a Parking Lot and a Bridge during Storms (주차장 및 교량지역의 강우유출수내 비점오염물질의 특성 비교 및 동적 EMCs)

  • Kim, Lee-Hyung;Lee, Seonha
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.248-255
    • /
    • 2005
  • Since the water quality of drinking water sources has been recognized as a big issue, the ministry of Environment in Korea is designing the total maximum daily load (TMDL) program for 4 major large rivers. The TMDL program can be successfully performed as controling the nonpoint pollutants from watershed area near the river. Of the various landuses in nonpoint pollution, parking lots and bridges are stormwater intensive landuses because of high imperviousness and high pollutant mass emissions from vehicular activities. Vehicle emissions from those areas include different pollutants such as heavy metals, oil and grease and particulates from sources such as fuels, brake pad and tire wear, etc. Especially the pollutant washed-off from the landuses are directly affecting to the river water quality. Therefore this research was conducted to understand the magnitude and nature of the stormwater emissions with the goal of quantifying stormwater pollutant concentrations and mass emission rates of pollutants from parking lot and bridges in Korea. In Kongju city areas, two monitoring sites were equipped with an automatic rainfall gages and an automatic flow meter for accumulating the useful data such as rainfall, water quality and runoff flow. This manuscripts will show the concentration changes during storm duration and EMCs to characterize the concentration profiles in different land uses. Also the first flush criteria will be suggested using dynamic EMCs. The definition of dynamic EMC is a new approach explaining the relationship of EMC and first flush effect.

Numerical Study of Agitation Performance in the Mud Tank of On-shore Drilling (육상 시추용 머드탱크의 교반성능에 대한 수치해석적 연구)

  • Hwang, Jong-Duck;Ku, Hak-Keun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.617-626
    • /
    • 2020
  • The drilling mud is essentially used in oil and gas development. There are several roles of using the drilling mud, such as cleaning the bottomhole, cooling and lubricating the drill bit and string, transporting the cuttings to the surface, keeping and adjusting the wellbore pressure, and preventing the collapse of the wellbore. The fragments from rocks and micro-sized bubbles generated by the high pressure are mixed in the drilling mud. The systems to separate those mixtures and to keep the uniformly maintained quality of drilling mud are required. In this study, the simulation is conducted to verify the performance of the mud tank's agitation capacity. The primary role of the mud tank is the mixing of mud at the surface with controlling the mud condition. The container type is chosen as a mud tank pursuing efficient transport and better management of equipment. The single- and two-phase simulations about the agitation in the mud tank are performed to analyze and identify the inner flow behavior. The convergence of results is obtained for the vertical- and axis-direction velocity vector fields based on the grid-dependency tests. The mixing time analysis depending on the multiphase flow conditions indicates that the utilization of a two-stepped impeller with a smaller size provides less time for mixing. This study's results are expected to be utilized as the preliminary data to develop the mixing and integrating equipment of the onshore drilling mud system.

The Development of the HACCP Plan in Korean Rice Cake Manufacturing Facilities (시판 떡류 생산에서 HACCP Plan 개발을 위한 연구)

  • Lee, Hyo-Soon;Jang, Myung-Sook
    • Korean journal of food and cookery science
    • /
    • v.24 no.5
    • /
    • pp.652-664
    • /
    • 2008
  • In this study, a Hazard Analysis Critical Control Point (HACCP) plan was developed for the sanitary mass production of commercial Korean rice cake products (Gaepidduk, Injulmi, and Julpyon). The microbiological properties of manufacturing flow were evaluated in order to develop the HACCP Plan. The moisture contents of the rice cakes ranged between 36.2${\sim}$55.3%, whereas the water activity of all samples ranged between 0.954${\sim}$1.0. Microorganisms testing was conducted during various phases of the product flow of Korean rice cake preparation, and included assessments of food equipment, work environment, and cooking employees on a small scale. During the manufacture of Injulmi, Julpyon and Gaepidduk, CCPs were purchasing & storage, steaming and cooling, molding, and holding in the A and B manufactories. At the critical limit of CCPs, storage was conducted below at $5^{\circ}C$ in soybean powder, oil, and paste with redbeans. The steaming process was conducted above at $99^{\circ}C$ for 40 min. Cooling and holding processes were conducted for 2 hours below at $15^{\circ}C$. The molding process included sanitary education for foodhandlers and training for operators. Thus, certain prerequisite programs had to be implemented prior to the implementation of the HACCP system. High levels of bacterial contamination were detected in the aprons worn to work by some employees. Additionally, periodic sanitary education for foodhandlers and training for operators or managers was required. Cross contamination by materials was expected at the place where materials were processed or stored.

Coupled solid and fluid mechanics simulation for estimating optimum injection pressure during reservoir CO2-EOR

  • Elyasi, Ayub;Goshtasbi, Kamran;Hashemolhosseini, Hamid;Barati, Sharif
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.37-57
    • /
    • 2016
  • Reservoir geomechanics can play an important role in hydrocarbon recovery mechanism. In $CO_2$-EOR process, reservoir geomechanics analysis is concerned with the simultaneous study of fluid flow and the mechanical response of the reservoir under $CO_2$ injection. Accurate prediction of geomechanical effects during $CO_2$ injection will assist in modeling the Carbon dioxide recovery process and making a better design of process and production equipment. This paper deals with the implementation of a program (FORTRAN 90 interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators, using a partial coupling algorithm. A geomechanics reservoir partially coupled approach is presented that allows to iteratively take the impact of geomechanics into account in the fluid flow calculations and therefore performs a better prediction of the process. The proposed approach is illustrated on a realistic field case. The reservoir geomechanics coupled models show that in the case of lower maximum bottom hole injection pressure, the cumulative oil production is more than other scenarios. Moreover at the high injection pressures, the production rates will not change with the injection bottom hole pressure variations. Also the FEM analysis of the reservoir showed that at $CO_2$ injection pressure of 11000 Psi the plastic strain has been occurred in the some parts of the reservoir and the related stress path show a critical behavior.