• Title/Summary/Keyword: Oil fingerprint

Search Result 15, Processing Time 0.018 seconds

A study on oil-contaminated fingerprints developing (유지문 현출법에 관한 연구)

  • Choi, Mi-Jung;Park, Won-Seok;Kim, Man-Ki;Jeon, Chung-Hyun;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.89-96
    • /
    • 2010
  • In general, three types of fingerprints could be found at the crime scene: visible, plastic, and latent fingerprints. Examples of visible fingerprint include those made by blood, paint or ink. Plastic fingerprint are made from an impression of the finger on soft material as soap, wax, etc. Latent fingerprint are those of the invisible one to the human eye. Oil-contaminated fingerprints remained in the evidence, that are contaminated with the soybean oil, engine oil, lubricating oil or grease. Oil-contaminated fingerprints are special types of fingerprint evidence but the research for developing method regarding oil-contaminated fingerprints is a few. In this study, ultraviolet light source was employed for untreated oil-contaminated prints and the freeze-dry method with liquid nitrogen for freeze oil residue on the surfaces with sequence of developing oil-contaminated fingerprints with black and magnetic powders, cyanoacrylate (CA) fuming, Basic Yellow 40. The types of oil chosen for the experiment were soybean oil, LSA oil, engine oil and material surfaces selected for the experiment were glass, plastic aluminum plates. The aims of this study were to determine the appropriate developing methods for oil-contaminated fingerprints.

Development of latent fingerprints contaminated with ethanol on paper surfaces

  • Park, Eun-Jung;Hong, Sungwook
    • Analytical Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.105-112
    • /
    • 2019
  • Fingerprints may be contaminated with ethanol solutions. In order to solve the case, the law enforcement agency may need to visualize the fingerprint from these samples, but the development method has not been studied. The paper with latent fingerprint was contaminated with ethanol solution and then the blurring of ridge detail was observed. As a result, when the copy paper was contaminated with ethanol solutions of less than 75 % (v/v), the amino acid components of latent fingerprint residue blurred but lipid components of latent fingerprint residue didn't blurred. On the other hand, when the paper was contaminated with ethanol solution of more than 80 % (v/v), the amino acid components of latent fingerprint didn't blurred but the lipid components of latent fingerprint blurred. Therefore, it is found that the paper contaminated with ethanol solutions of less than 75 % (v/v) should be treated by oil red O (ORO) enhancing lipid components, and the paper contaminated with ethanol solutions of 80 % (v/v) or more should be treated by 1,2-indandione/zinc (1,2-IND/Zn) enhancing amino acid components. The blurring of ridge detail was not observed when the fingerprints were deposited with fingers contaminated with ethanol solution. This fingerprints were treated with 1,2-IND/Zn or ORO to compare the latent fingerprint development ability, and using 1,2-IND/Zn was able to visualize the latent fingerprint more clearly than using ORO.

Development of a New Artificial Latent Fingerprint Aqueous Solution by Improving Lipid Composition (지질조성 개선을 통한 새로운 인공 잠재지문 수용액의 개발)

  • Sang-Yoon LEE;Hwa-Seon LIM;Ki-Jong RHEE
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.99-103
    • /
    • 2024
  • Previous artificial latent fingerprint solution has shown unsatisfactory results. Therefore, in this study, we developed an artificial latent fingerprint solution close to the actual fingerprint composition by improving the lipid composition. We mixed lipid solution with amino acid solution at v/v ratios as follows: 2:3, 1:4, 1:5, 1:8, 1:10, 1:20. We then dropped the same amount of each proportion of artificial latent fingerprint solution on porous paper and non-porous slide glass. Subsequently, each sample was treated with Oil red O, Cyanoacrylate fuming and Basic yellow 40 staining. As the concentration of lipids decreased, the output also decreased. Both types of surfaces and all concentrations were visually confirmed very well. In addition, the reactivity to lipids was significantly higher compared to the previous artificial latent fingerprint solution. Furthermore, for the quantitative evaluation, it is necessary to conduct additional research on the printing of the artificial latent fingerprint solution.

Introduction of Korea Oil Identification System(KOIS) (우리나라의 해상유출물질 감식.분석기법 연구)

  • Lee, Y.S.;Lee, S.J.;Kim, C.S.;Oh, H.J.;Kim, H.G.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.85-92
    • /
    • 2006
  • Crude oil is complex mixture if thousands of different organic compound formed from a variety of organic materials that are chemically converted under differing geological conditions over long periods of time. Also oil composition varies according to crude source, refining, processing, handling and storage. The oil fingerprint method is application if specific knowledge of petrochemicals and use if sophisticated analytical equipment and techniques to identify the source(s) if oil pollution. KCG currently utilizes four primary analytical techniques: Gas Chromatography (GC), Fluorescence Spectroscopy(FL), Infrared Spectroscopy(IR) and Gas Chromatography mass spectrometer(GC/MS). Of all these techniques, GC technique are most widely used Gas Chromatography is used as a primary analytical method because high reliableness, high separating efficiency and repeatability.

  • PDF

Study for Oil Spill Source Identification by Comprehensive Two Dimensional Gas Chromatography (2차원 가스크로마토그래프를 이용한 해상유출유 감식기법 연구)

  • Lee, Y.S.;Lee, S.J.;Kim, C.S.;Oh, H.J.;Kim, H.G.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.169-174
    • /
    • 2006
  • A distinctive difference of hydrocarbon in crude oil and petroleum products exists. Depending on the origin where it comes from, crude oil shows its own unique pattern which is different from petroleum products containing characteristics according to their operating process and production period. A process of mixing behavior in a tank containing residual amounts of oil draws its own pattern when analysis is conducted. The analytical process described above is named oil fingerprint method. This study investigates an effectiveness of the method for comparing data sets produced by conventional gas chromatography with mass spectrometer (GC/MS) and comprehensive two-dimensional gas chromatography (GC X GC) which is known as powerful new technology for chemical analysis.

  • PDF

The Study for Identification of waterborne Spilled Oil by Fast Gas Chromatography (Fast GC를 이용한 해상유출유 감식ㆍ분석 기법 연구)

  • Chung J. W.;Lee W.S.;Yoon J. Y.;Kim H. G.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.122-130
    • /
    • 2004
  • Crude oil is complex mixture of thousands of different organic compound formed from a variety of organic materials that are chemically converted under differing geological conditions over long periods of time. Also oil composition varies according to crude source, refining, processing, handling and storage. The oil fingerprint method is application of specific knowledge of petrochemicals and use of sophisticated analytical equipment and techniques to identify the source(s) of oil pollution. KNMPA currently utilizes three primary analytical techniques: Gas Chromatography (GC), Fluorescence Spectroscopy(FL) and Infrared Spectroscopy(IR). Of all these techniques, GC technique are most widely used. Gas Chromatography is used as a primary analytical method because high reliableness, high separating efficiency and repeatability, but it is timeconsumable. The study results of identification of waterborne spilled oil by Fast Gas Chromatograph method showed that analytical time is cut down to 30minutes in comparison with packed column method and chromatograms represent high resolution and high repeatability.

  • PDF

Industrial Applications of Si-based Ceramics

  • Eichler, Jens
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.561-565
    • /
    • 2012
  • Due to their unique combination of properties, Si-based ceramics, such as silicon carbide (SiC), silicon nitride ($Si_3N_4$) and silicon oxide ($SiO_2$ as fused silica), have a range of industrial applications in fields such as the chemical industry, aluminum manufacturing, oil and gas production and solar cell production. For each materials group, examples of typical applications from various industry sectors are presented while taking into account the property fingerprint.