• 제목/요약/키워드: Oil conversion rate

검색결과 59건 처리시간 0.022초

연속공정에서 알칼리 및 혼합촉매를 사용한 자트로파유의 바이오디젤화 (Conversion of Jatropha Oil into Biodiesel in Continuous Process Using Alkali and Mixed Catalysts)

  • 현영진
    • 한국응용과학기술학회지
    • /
    • 제26권4호
    • /
    • pp.394-399
    • /
    • 2009
  • The esterification of palmitic acid in Jatropha Oil using 8wt% p-TSA catalyst was done at the 1:8 molar ratio of oil to methanol and $65^{\circ}C$. The conversion of palmitic acid appeared to be 95.3% in 60min. After that, the continuous transesterification of the oil using 0.5wt% KOH, 0.8wt% TMAH mixed catalyst[40vol% KOH(0.5wt%) + 60vol% TMAH(0.8wt%)] and 1.1wt% TMAH was conducted with the flow rates and the molar ratios at $65^{\circ}C$. The overall conversion of Jatropha Oil increased with the decrease of flow rate and showed 95.6% with 9ml/min of flow rate at the 1:8 molar ratio of oil to methanol and $65^{\circ}C$. But it showed 87% with 15ml/min of flow rate at the same conditions. The recovery of methanol(%) appeared to be 86% at the 1:8 molar ratio of oil to methanol, mixed catalyst and $65^{\circ}C$.

고체 촉매를 이용한 대두유와 폐식용유의 에스테르화 (Esterification of the Soybean Oil and Waste Vegetable Oil by Solid Catalysts)

  • 신용섭
    • 한국환경과학회지
    • /
    • 제13권1호
    • /
    • pp.79-87
    • /
    • 2004
  • Esterification of soybean oil with methanol was investigated. First of all, liquid-liquid equilibriums for systems of soybean oil and methanol were measured at temperatures ranging from 40 to 65$^{\circ}C$. Profiles of conversion of soybean oil with time were determined from the glycerine content in reaction mixtures for the different kinds of catalysts, such as NaOH, CaO, Ca(OH)$_2$, MgO, Mg(OH)$_2$, and Ba(OH)$_2$. The effects of dose of catalyst, cosolvent and reaction temperature on final conversion were examined. Esterification of waste vegetable oil with methanol was investigated and compared to the case of soybean oil. Solubility of methanol in soybean oil was substantially greater than that of soybean oil in methanol. When the esterification reaction of soybean oil was catalyzed by solid catalyst, final conversion was strongly dependent on the alkalinity of the solid catalyst, and increased with the alkalinity of the metal. Hydroxides from the alkali metals were more effective than oxides. When Ca(OH)$_2$ was used for the esterification catalyst, maximum value of final conversion was measured at dose of 4%. When CHCl$_3$ as a cosolvent, was added into the reaction mixture of soybean oil which catalyzed by Ba(OH)$_2$, maximum value of final conversion was appeared at dose of 3%. When waste vegetable oil was catalyzed by NaOH and solid catalysts, high final conversion, over 90%, and fast reaction rate were obtained.

디젤기관에서 경유/부탄올 혼합연료의 기관성능 및 연소특성 해석 (Analysis of performance and combustion characteristics of D.O./butanol blended fuels in a diesel engine)

  • 김상암;왕우경
    • 수산해양기술연구
    • /
    • 제55권4호
    • /
    • pp.411-418
    • /
    • 2019
  • In this study, to investigate the effect of physical and chemical properties of butanol on the engine performance and combustion characteristics, the coefficient of variations of IMEP (indicated mean effective pressure) and fuel conversion efficiency were obtained by measuring the combustion pressure and the fuel consumption quantity according to the engine load and the mixing ratio of diesel oil and butanol. In addition, the combustion pressure was analyzed to obtain the pressure increasing rate and heat release rate, and then the combustion temperature was calculated using a single zone combustion model. The experimental and analysis results of butanol blending oil were compared with the those of diesel oil under the similar operation conditions to determine the performance of the engine and combustion characteristics. As a result, the combustion stabilities of D.O. and butanol blending oil were good in this experimental range, and the indicated fuel conversion efficiency of butanol blending oil was slightly higher at low load but that of D.O. was higher above medium load. The premixed combustion period of D.O. was almost constant regardless of the load. As the load was lower and the butanol blending ratio was higher, the premixed combustion period of butanol blending oil was longer and the premixed combustion period was almost constant at high load regardless of butanol blending ratio. The average heat release rate was higher with increasing loads; especially as butanol blending ratio was increased at high load, the average heat release rate of butanol blending oil was higher than that of D.O. In addition, the calculated maximum. combustion temperature of butanol blending oil was higher than that of D.O. at all loads.

산촉매에 의한 대두유의 전이에스테르화 반응 특성 (Characteristics of Transesterification Reaction of Soy Bean Oil by Acid Catalysts)

  • 신용섭
    • 한국환경과학회지
    • /
    • 제18권2호
    • /
    • pp.231-238
    • /
    • 2009
  • Characteristics of the transesterification reaction between triglycerides in soy bean oil and methanol were investigated in the presence of acid catalysts. such as sulfuric acid and PTS (p-toluene sulfonic acid). Concentrations of diglyceride and monoglyceride which were intermediates in the reaction mixtures, were far below 10% of triglyceride under any reaction conditions. Thus, conversion of the reaction could be determined from the concentration of triglyceride. Dried PTS had more superior catalytic power than sulfuric acid for transesterification reaction between soy bean oil and methanol. When transesterification reaction of soy bean oil was catalyzed by 1 wt% of PTS at methanol stoichiometric mole ratio of 2 and $65^{\circ}C$, final conversion reached 95% within 48 hours. If FAME (fatty acid methyl ester) was added into reaction mixture of soy bean oil, methanol and PTS catalyst, it converted reaction mixture into homogeneous phase, and substantially increased reaction rate. When reaction mixture was freely boiling which had equal volumetric amount of FAME to soy bean oil, methanol stoichiometric mole ratio of 2 and 1 wt% of PTS, final conversion achieved value of 94% and temperature approached to $110^{\circ}C$ within 2 hours.

Acinetobacter sp. A54에 의한 Arabian Light 원유의 분해

  • 이창호;김희식;서현효;최성훈;오희목;윤병대
    • 한국미생물·생명공학회지
    • /
    • 제25권5호
    • /
    • pp.520-526
    • /
    • 1997
  • Bacterial strains which degrade Arabian Light crude oil were isolated by enrichment culture from oil-spilled soil. The strain A54 was finally selected after testing emulsifying activity and oil conversion rate. Strain A54 was identified as a Acinetobacter sp. based on the morphological, biochemical and physiological characteristics. It appears to be highly specialized for growth on Arabian Light crude oil in minimal salts medium since it showed preference for oil or degradation products as substrates for growth. It was found that it could grow on at least fifteen different hydrocarbons. The optimum cultural and environmental conditions were as follows; 25$\circ$C for temperature, 7,5 for pH, 2.0% for NaCl concentration and 2.0% for crude oil concentration. Additionally, the optimal concentration of NH$_{4}$NO$_{3}$, and K$_{2}$HPO$_{4}$, were 12.5 mM and 0.057 mM, respectively. Cell growth and emulsifying activity as a function of time were also determined. Crude oil degradation and the reduction of product peaks were identified by the analysis of remnant oil by gas chromatography. Approximately 63% of crude oil were converted into a form no longer extractable by mixed organic solvents.

  • PDF

Oil shale의 열분해 특성 연구 (Pyrolysis Characteristics of Oil Shale)

  • 노선아;윤진한;길상인;이정규;김한석
    • 청정기술
    • /
    • 제24권4호
    • /
    • pp.365-370
    • /
    • 2018
  • Oil shale은 kerogen을 함유한 퇴적암으로 대표적인 비재래 에너지자원으로 알려져 있다. 열분해 공정을 통하여 oil shale이 분해되면 oil, gas 및 coke를 생성하게 된다. 본 연구에서는 oil shale의 청정 전환기술을 개발하기 위하여 oil shale의 TGA 및 연속 열분해 연구를 수행하였다. Oil shale의 열분해 전환율에 대한 반응 온도 및 체류시간의 영향을 살펴보고 oil의 생성율을 살펴보았다. Oil shale의 열분해 전환율은 온도와 체류시간에 따라 증가하였으며 $450{\sim}500^{\circ}C$, 체류시간 30 min의 조건에서 최대 oil 생산 수율을 나타내었다.

소형 어선용 디젤기관의 운전조건과 부탄올 혼합유의 배기 배출물 특성에 관한 연구 (A study on exhaust emission characteristics according to operating conditions and butanol blended fuels in a small diesel engine for fishing vessel)

  • 김상암;왕우경
    • 수산해양기술연구
    • /
    • 제57권3호
    • /
    • pp.256-263
    • /
    • 2021
  • In this study, blending oils of diesel oil and butanol were used as fuel oil for diesel engine to measure combustion pressure, fuel consumption, air ratio and exhaust gas emission due to various operating conditions such as engine revolution and torque. Using these data, the results of analyzing the engine performance, combustion characteristics and exhaust emission characteristics such as NOx (nitrogen oxides), CO2 (carbon dioxide), CO (carbon monoxide) and soot were as follows. The fuel conversion efficiency at each load was highest when driven in the engine revolution determined by a fixed pitch propeller law. Except 30% butanol blending oil, fuel conversion efficiency of the other fuel oils increased as the load increased. Compared to diesel oil, using 10% and 20% butanol blending oil as fuel oil was advantageous in terms of thermal efficiency, but it did not have a significant impact on the reduction of exhaust gas emissions. On the other hand, future research is needed on the results of the 20% butanol blending oil showing lower or similar levels of smoke concentration and carbon monoxide emission rate other than those types of diesel oil.

코킹 공정(工程)을 이용한 오일샌드 역청(瀝靑)의 열화학(熱化學)적 전환(轉換) (Thermochemical Conversion of Oil sand Bitumen in Delayed Coking Reactor)

  • 이시훈;윤상준;이재구;김재호
    • 자원리싸이클링
    • /
    • 제17권3호
    • /
    • pp.35-41
    • /
    • 2008
  • 석유를 대체할 수 있는 자원 중의 하나인 오일샌드 역청의 열화학적 전환을 통해 생산된 연료유 특성을 열천칭 분석기와 중질유들의 전환 공정에 사용되는 딜레이드 코킹 반응기(600ml)를 이용하여 분석하였다. 동일한 $50^{\circ}C/min$의 승온 속도로 최종 코킹 온도를 $400{\sim}550^{\circ}C$까지 변화시킨 결과, 최종 코킹 온도가 증가할수록 코킹이 완료되는 시간과 전환률이 증가하였다. 그러나 $450^{\circ}C$이상의 온도에서는 미비하게 증가하여 코킹 운전이 적어도 $450^{\circ}C$ 이상이 되어야 함을 알 수 있었다. 딜레이드 코킹 반응기의 최대 액체 수율은 $475^{\circ}C$의 조건으로 나타났으며 코킹에 의해 생성되는 오일의 API, SIMDAS분석을 통해 경질화가 진행되어 일반적인 디젤과 비슷한 연료 특성을 가짐을 확인하였다.

Camelina oil transesterification using mixed catalyst of tetra methyl amonium hydroxide and potassium hydroxide on the tubular reactor

  • Hyun, Young-Jin
    • 한국응용과학기술학회지
    • /
    • 제28권2호
    • /
    • pp.178-184
    • /
    • 2011
  • The analysis of reaction kinetics provided that the reaction order was the $1^{st}$ of triglyceride and the rate constant was 0.067 $min^{-1}$. The transesterification of camelina oil using 0.6 wt% mixed catalyst which consists of 40 v/v% of potassium hydroxide (1 wt%) and 60 v/v% of tetra methyl ammonium hydroxide (0.8 wt%), was carried out at $65^{\circ}C$ on the tubular reactor packed with static mixer. The conversion was shown to be 95.5% at the 6:1 molar ratio of methanol to oil, flow rate of feed of 3.0 mL/min and 24 of element of static mixer. The volume of washing water emitted by 0.6 wt% mixed catalyst was the half of the volume emitted by 1 wt% potassium hydroxide.

Hydrolysis Mechanisms of Fish Oil by Lipolase-100T

  • HUR, BYUNG-KI;DONG-JIN WOO;CHONG-BO KIM
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.624-630
    • /
    • 1999
  • In order to investigate the position of various fatty acids attached to glycerol and the specificity of Lipolase-100T, hydrolysis of fish oil was carried out with Lipolase-100T derived from Aspergillus oryzae. The amounts of free fatty acids produced from triglyceride, 1,2(2,3)-diglyceride, 1,3-diglyceride, and 2-monoglyceride and conversion rates of 1,2(2,3)-diglyceride to 1,3-diglyceride and 2-monoglyceride to 1(3)-monoglyceride were also calculated. The ratio of 1,2-diglyceride content to 1,3-diglyceride was higher than 70 in the early period of hydrolysis. The fatty acid content of the glyceride mixture after 72 h of hydrolysis was compared with that of fish oil, and it was found that polyunsaturated fatty acids such as C16:4, C20:4 n-3, C20:5 n-3, C21:5 n-3, C22:5 n-3 and C22:6 n-3 were located in the 2-position of glycerol. Material balance of each component in the hydrolysis system was written to obtain a set of simultaneous linear equations. The theoretical quantity of free fatty acids produced from triglyceride, 1,2-diglyceride, 1,3-diglyceride, and monoglyceride, respectively, were calculated by solving the linear equation system. The conversion rate of 1,2(2,3)-diglyceride to 1,3-diglyceride and that of 2-monoglyceride to 1(3)-monoglyceride were also obtained. The results showed that the migration rate of 1,2(2,3)-diglyceride to 1,3-diglyceride was higher than the hydrolysis rate of 1,2(2,3)-diglyceride to 2-monoglyceride and the conversion rate of 2-monoglyceride to 1(3)-monoglyceride was extremely low.

  • PDF