• Title/Summary/Keyword: Oil conversion rate

Search Result 59, Processing Time 0.018 seconds

Conversion of Jatropha Oil into Biodiesel in Continuous Process Using Alkali and Mixed Catalysts (연속공정에서 알칼리 및 혼합촉매를 사용한 자트로파유의 바이오디젤화)

  • Hyun, Young-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.394-399
    • /
    • 2009
  • The esterification of palmitic acid in Jatropha Oil using 8wt% p-TSA catalyst was done at the 1:8 molar ratio of oil to methanol and $65^{\circ}C$. The conversion of palmitic acid appeared to be 95.3% in 60min. After that, the continuous transesterification of the oil using 0.5wt% KOH, 0.8wt% TMAH mixed catalyst[40vol% KOH(0.5wt%) + 60vol% TMAH(0.8wt%)] and 1.1wt% TMAH was conducted with the flow rates and the molar ratios at $65^{\circ}C$. The overall conversion of Jatropha Oil increased with the decrease of flow rate and showed 95.6% with 9ml/min of flow rate at the 1:8 molar ratio of oil to methanol and $65^{\circ}C$. But it showed 87% with 15ml/min of flow rate at the same conditions. The recovery of methanol(%) appeared to be 86% at the 1:8 molar ratio of oil to methanol, mixed catalyst and $65^{\circ}C$.

Esterification of the Soybean Oil and Waste Vegetable Oil by Solid Catalysts (고체 촉매를 이용한 대두유와 폐식용유의 에스테르화)

  • Sin, Yong Seop
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.79-87
    • /
    • 2004
  • Esterification of soybean oil with methanol was investigated. First of all, liquid-liquid equilibriums for systems of soybean oil and methanol were measured at temperatures ranging from 40 to 65$^{\circ}C$. Profiles of conversion of soybean oil with time were determined from the glycerine content in reaction mixtures for the different kinds of catalysts, such as NaOH, CaO, Ca(OH)$_2$, MgO, Mg(OH)$_2$, and Ba(OH)$_2$. The effects of dose of catalyst, cosolvent and reaction temperature on final conversion were examined. Esterification of waste vegetable oil with methanol was investigated and compared to the case of soybean oil. Solubility of methanol in soybean oil was substantially greater than that of soybean oil in methanol. When the esterification reaction of soybean oil was catalyzed by solid catalyst, final conversion was strongly dependent on the alkalinity of the solid catalyst, and increased with the alkalinity of the metal. Hydroxides from the alkali metals were more effective than oxides. When Ca(OH)$_2$ was used for the esterification catalyst, maximum value of final conversion was measured at dose of 4%. When CHCl$_3$ as a cosolvent, was added into the reaction mixture of soybean oil which catalyzed by Ba(OH)$_2$, maximum value of final conversion was appeared at dose of 3%. When waste vegetable oil was catalyzed by NaOH and solid catalysts, high final conversion, over 90%, and fast reaction rate were obtained.

Analysis of performance and combustion characteristics of D.O./butanol blended fuels in a diesel engine (디젤기관에서 경유/부탄올 혼합연료의 기관성능 및 연소특성 해석)

  • KIM, Sang-Am;WANG, Woo-Gyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.4
    • /
    • pp.411-418
    • /
    • 2019
  • In this study, to investigate the effect of physical and chemical properties of butanol on the engine performance and combustion characteristics, the coefficient of variations of IMEP (indicated mean effective pressure) and fuel conversion efficiency were obtained by measuring the combustion pressure and the fuel consumption quantity according to the engine load and the mixing ratio of diesel oil and butanol. In addition, the combustion pressure was analyzed to obtain the pressure increasing rate and heat release rate, and then the combustion temperature was calculated using a single zone combustion model. The experimental and analysis results of butanol blending oil were compared with the those of diesel oil under the similar operation conditions to determine the performance of the engine and combustion characteristics. As a result, the combustion stabilities of D.O. and butanol blending oil were good in this experimental range, and the indicated fuel conversion efficiency of butanol blending oil was slightly higher at low load but that of D.O. was higher above medium load. The premixed combustion period of D.O. was almost constant regardless of the load. As the load was lower and the butanol blending ratio was higher, the premixed combustion period of butanol blending oil was longer and the premixed combustion period was almost constant at high load regardless of butanol blending ratio. The average heat release rate was higher with increasing loads; especially as butanol blending ratio was increased at high load, the average heat release rate of butanol blending oil was higher than that of D.O. In addition, the calculated maximum. combustion temperature of butanol blending oil was higher than that of D.O. at all loads.

Characteristics of Transesterification Reaction of Soy Bean Oil by Acid Catalysts (산촉매에 의한 대두유의 전이에스테르화 반응 특성)

  • Shin, Yong-Seop
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.231-238
    • /
    • 2009
  • Characteristics of the transesterification reaction between triglycerides in soy bean oil and methanol were investigated in the presence of acid catalysts. such as sulfuric acid and PTS (p-toluene sulfonic acid). Concentrations of diglyceride and monoglyceride which were intermediates in the reaction mixtures, were far below 10% of triglyceride under any reaction conditions. Thus, conversion of the reaction could be determined from the concentration of triglyceride. Dried PTS had more superior catalytic power than sulfuric acid for transesterification reaction between soy bean oil and methanol. When transesterification reaction of soy bean oil was catalyzed by 1 wt% of PTS at methanol stoichiometric mole ratio of 2 and $65^{\circ}C$, final conversion reached 95% within 48 hours. If FAME (fatty acid methyl ester) was added into reaction mixture of soy bean oil, methanol and PTS catalyst, it converted reaction mixture into homogeneous phase, and substantially increased reaction rate. When reaction mixture was freely boiling which had equal volumetric amount of FAME to soy bean oil, methanol stoichiometric mole ratio of 2 and 1 wt% of PTS, final conversion achieved value of 94% and temperature approached to $110^{\circ}C$ within 2 hours.

Acinetobacter sp. A54에 의한 Arabian Light 원유의 분해

  • Lee, Chang-Ho;Kim, Hee-Sik;Suh, Hyun-Hyo;Choi, Soung-Hun;Oh, Hee-Mock;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.520-526
    • /
    • 1997
  • Bacterial strains which degrade Arabian Light crude oil were isolated by enrichment culture from oil-spilled soil. The strain A54 was finally selected after testing emulsifying activity and oil conversion rate. Strain A54 was identified as a Acinetobacter sp. based on the morphological, biochemical and physiological characteristics. It appears to be highly specialized for growth on Arabian Light crude oil in minimal salts medium since it showed preference for oil or degradation products as substrates for growth. It was found that it could grow on at least fifteen different hydrocarbons. The optimum cultural and environmental conditions were as follows; 25$\circ$C for temperature, 7,5 for pH, 2.0% for NaCl concentration and 2.0% for crude oil concentration. Additionally, the optimal concentration of NH$_{4}$NO$_{3}$, and K$_{2}$HPO$_{4}$, were 12.5 mM and 0.057 mM, respectively. Cell growth and emulsifying activity as a function of time were also determined. Crude oil degradation and the reduction of product peaks were identified by the analysis of remnant oil by gas chromatography. Approximately 63% of crude oil were converted into a form no longer extractable by mixed organic solvents.

  • PDF

Pyrolysis Characteristics of Oil Shale (Oil shale의 열분해 특성 연구)

  • Roh, Seon Ah;Yun, Jin Han;Keel, Sang In;Lee, Jung Kyu;Kim, Han Seok
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.365-370
    • /
    • 2018
  • Oil shale is the sedimentary rock containing kerogen, which is one of the abundant unconventional fuel. In the pyrolysis process, oil, gas and coke are produced from the decomposition of oil shale. In this study, TGA and the continuous pyrolysis of oil shale have been investigated for the clean conversion of oil shale. Effects of reaction temperature and residence time on the pyrolysis conversion and oil production rate have been determined. Conversion of oil shale increases with increasing the reaction temperature and residence time. Optimum conditions for oil production were reaction temperature of $450{\sim}500^{\circ}C$ at the residence time of 30 min.

A study on exhaust emission characteristics according to operating conditions and butanol blended fuels in a small diesel engine for fishing vessel (소형 어선용 디젤기관의 운전조건과 부탄올 혼합유의 배기 배출물 특성에 관한 연구)

  • KIM, Sang-Am;WANG, Woo-Gyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.256-263
    • /
    • 2021
  • In this study, blending oils of diesel oil and butanol were used as fuel oil for diesel engine to measure combustion pressure, fuel consumption, air ratio and exhaust gas emission due to various operating conditions such as engine revolution and torque. Using these data, the results of analyzing the engine performance, combustion characteristics and exhaust emission characteristics such as NOx (nitrogen oxides), CO2 (carbon dioxide), CO (carbon monoxide) and soot were as follows. The fuel conversion efficiency at each load was highest when driven in the engine revolution determined by a fixed pitch propeller law. Except 30% butanol blending oil, fuel conversion efficiency of the other fuel oils increased as the load increased. Compared to diesel oil, using 10% and 20% butanol blending oil as fuel oil was advantageous in terms of thermal efficiency, but it did not have a significant impact on the reduction of exhaust gas emissions. On the other hand, future research is needed on the results of the 20% butanol blending oil showing lower or similar levels of smoke concentration and carbon monoxide emission rate other than those types of diesel oil.

Thermochemical Conversion of Oil sand Bitumen in Delayed Coking Reactor (코킹 공정(工程)을 이용한 오일샌드 역청(瀝靑)의 열화학(熱化學)적 전환(轉換))

  • Lee, See-Hoon;Yoon, Sang-Jun;Lee, Jae-Goo;Kim, Jae-Ho
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.35-41
    • /
    • 2008
  • The study of coking technology to upgrade oil sand bitumen which is considered as alternative fuel was performed by using thermogravity analyzer and delayed coking reactor(600ml). To analyzed and compared coking characteristics of oil sand bitumen, the reactivities of oil sand bitumen were measured in the TGA. At the temperature conditions of $400{\sim}550^{\circ}C$ and the temperature rising velocity of $50^{\circ}C/min$. the termination time of coking reaction and conversion efficiencies increased with an increase of bed temperature. However the increase rate decreased over $450^{\circ}C$. So the coking reaction with oil sand bitumen might be over $450^{\circ}C$. Also the termination time decreased with increasing the temperature rising velocity. But the content of coke increased with increasing temperature rising velocity. At the experiments in the delayed coker, the temperature condition at maximum oil yield was $475^{\circ}C$ and the fuel properties of oil from coking reaction was almost equal with conventional diesel. It was verified that the coking process might be useful process to upgrade the oil sand bitumem by using API and SIMDAS.

Camelina oil transesterification using mixed catalyst of tetra methyl amonium hydroxide and potassium hydroxide on the tubular reactor

  • Hyun, Young-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.178-184
    • /
    • 2011
  • The analysis of reaction kinetics provided that the reaction order was the $1^{st}$ of triglyceride and the rate constant was 0.067 $min^{-1}$. The transesterification of camelina oil using 0.6 wt% mixed catalyst which consists of 40 v/v% of potassium hydroxide (1 wt%) and 60 v/v% of tetra methyl ammonium hydroxide (0.8 wt%), was carried out at $65^{\circ}C$ on the tubular reactor packed with static mixer. The conversion was shown to be 95.5% at the 6:1 molar ratio of methanol to oil, flow rate of feed of 3.0 mL/min and 24 of element of static mixer. The volume of washing water emitted by 0.6 wt% mixed catalyst was the half of the volume emitted by 1 wt% potassium hydroxide.

Hydrolysis Mechanisms of Fish Oil by Lipolase-100T

  • HUR, BYUNG-KI;DONG-JIN WOO;CHONG-BO KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.624-630
    • /
    • 1999
  • In order to investigate the position of various fatty acids attached to glycerol and the specificity of Lipolase-100T, hydrolysis of fish oil was carried out with Lipolase-100T derived from Aspergillus oryzae. The amounts of free fatty acids produced from triglyceride, 1,2(2,3)-diglyceride, 1,3-diglyceride, and 2-monoglyceride and conversion rates of 1,2(2,3)-diglyceride to 1,3-diglyceride and 2-monoglyceride to 1(3)-monoglyceride were also calculated. The ratio of 1,2-diglyceride content to 1,3-diglyceride was higher than 70 in the early period of hydrolysis. The fatty acid content of the glyceride mixture after 72 h of hydrolysis was compared with that of fish oil, and it was found that polyunsaturated fatty acids such as C16:4, C20:4 n-3, C20:5 n-3, C21:5 n-3, C22:5 n-3 and C22:6 n-3 were located in the 2-position of glycerol. Material balance of each component in the hydrolysis system was written to obtain a set of simultaneous linear equations. The theoretical quantity of free fatty acids produced from triglyceride, 1,2-diglyceride, 1,3-diglyceride, and monoglyceride, respectively, were calculated by solving the linear equation system. The conversion rate of 1,2(2,3)-diglyceride to 1,3-diglyceride and that of 2-monoglyceride to 1(3)-monoglyceride were also obtained. The results showed that the migration rate of 1,2(2,3)-diglyceride to 1,3-diglyceride was higher than the hydrolysis rate of 1,2(2,3)-diglyceride to 2-monoglyceride and the conversion rate of 2-monoglyceride to 1(3)-monoglyceride was extremely low.

  • PDF