• Title/Summary/Keyword: Oil behavior

Search Result 588, Processing Time 0.034 seconds

Analysis of Behavior Characteristics of Water Pollutants in Yeongsan River Using 3D Hydraulic Model (3차원 수리 모델을 이용한 영산강 수질오염물질의 수체 내 거동 특성 분석)

  • Hye Yeon Oh;Eun Jung Kim;Jung Hyun Choi
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.6
    • /
    • pp.439-450
    • /
    • 2023
  • The Yeongsan River, a major water resource for Jeollanam-do, that is adjacent to industrial complexes and agricultural areas, is exposed to water pollution. Therefore, it is necessary to investigate the impact of water pollution incidences and prepare response systems for river environment safety for other water resources in the future. Environmental Fluid Dynamics Code (EFDC) was applied to the mainstream of the Yeongsan River where residential, commercial, and agricultural areas are located to analyze the behavior of pollutants conducting the scenario analysis. Considering the pollutants that affected the study area, two pollutants, oil and benzene, with different physical and chemical characteristics were selected for the analysis. As a result of comparing the actual and simulated values of the water elevation, temperature, and flow rate, it was confirmed that the model adequately reproduced the hydraulic characteristics of the Yeongsan River. The oil flow dynamics showed that an increase in flow rate led to reduction in the maximum height of the slick. Notably, the behavior of the oil was predominantly influenced by the wind conditions. In the case of benzene, lower flow scenarios exhibited decreased arrival times and residence times accompanied by an elevation in the maximum concentration levels. From the results of pollutant behavior in the study area, it is feasible to utilize the section of tributary confluence for collection and the weir area for dilution. This study enhances the understanding of the pollutant's behavior with different characteristics and develops effective control systems tailored to the physicochemical attributes of pollutants.

Dynamic Stiffness and Frequency Response Analysis for the Development of Magnesium Oil Pans (마그네슘 합금 오일팬 개발을 위한 동적 강성 및 주파수 응답 해석)

  • Shin, Hyun-Woo;Chung, Yeon-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.141-149
    • /
    • 2009
  • The oil pan is an important factor for the noise behavior of the engine system. In this paper a new Magnesium oil pan was designed and analyzed to replace the current Aluminium oil pan. Dynamic stiffness and sound pressure level of the newly designed Mg oil pan were compared with the AI oil pan using the finite element method. NVH characteristics of the Mg oil pan is slightly insufficient when we changed the material of the oil pan from Al to Mg without modifying the design. Some design modifications of the Mg oil pan resulted in equal or superior characteristics compared to the Al oil pan. New ribs were added to stiffen the structure of the Mg oil pan. Thickness of thin plate area was increased to reduce the radiated noise. Through the changes of shape, higher dynamic stiffness than the current Al oil pan were achieved. Results of frequency response analysis show that we can reduce the sound pressure level of the oil pan if we increase the thickness of the thin plate area. It is shown that the new Mg oil pan could reduce the weight of the engine system and improve NVH quality of an automobile.

Measurement of solubility and miscibility of R-134a/PAG oil mixture (R-134a/PAG 오일 혼합물의 용해도 및 상용성 측정)

  • 김창년;송준석;박영무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.518-527
    • /
    • 1999
  • The solubility and miscibility measurement apparatus has been developed and used to obtain data for refrigerant/oil mixture. The solubility and miscibility data for R-134a/46 ISO VG Polyalkylen Glycol(PAG) oil mixture are obtained over the temperature range from -20 to 6$0^{\circ}C$ with a 1$0^{\circ}C$ interval and the oil concentration range from 0 to 90wt%. Using the experimental data, an empirical model is developed to predict the solubility relations for R-134a/PAG oil mixture at equilibrium. The average root-mean-square deviation between measured data and calculated results from the empirical model is 4.2%. Raoult's rule and Flory-Noggins theory are also used to predict mixture behavior. Immiscibility is observed for R-134a/46 ISO VG PAG oil mixture at low oil concentrations of 4.6, 10.1, and 20.4wt%.

  • PDF

Optimal Oil Temperature at the Main Transformer Cooling System (주변압기 냉각시스템의 최적오일온도)

  • Han, Do-Young;Won, Jae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.955-960
    • /
    • 2009
  • In order to improve the efficiency of the main transformer in a tilting train, the optimal operation of a cooling system is necessary. Mathematical models of a main transformer cooling system were developed. These include models for the main transformer, the oil pump, the oil cooler, and the blower. The optimal oil temperature algorithm was also developed. This consists of the optimal setpoint algorithm and the control algorithm. A simulation program was developed by using mathematical models and the optimal oil temperature algorithm. Simulation results showed that the dynamic behavior of a main transformer cooling system was predicted well by mathematical models and a main transformer cooling system was controlled effectively by the optimal oil temperature algorithm.

  • PDF

The Effects of an Essential Oil Mouthrinse on Oral Health in the Community Indwelling Elderly (정유를 이용한 구강자가간호가 재가노인의 구강건강에 미치는 효과)

  • Chung, Senug-Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.36 no.1
    • /
    • pp.84-93
    • /
    • 2006
  • Purpose: The purpose of this study was to investigate the effects of an essential oil mouthrinse with gingival massage on oral health in community indwelling elderly. Method: The subjects were composed of 61 healthy elderly at a Senior Welfare Center in J city. Thirty subjects in the experimental group were given toothbrushing education ongingival massage toothbrushing with an essential oil mouthrinse for 2 weeks(4 times per day, 3 minutes per session). The 31 subjects in the control group were given toothbrushing education ongingival massage toothbrushing. The effects of the treatment were measured by salivary pH, salivary IgA level, halitosis, oral subjective symptoms, and oral self care behavior scores before, right after and 2 weeks after the experiment. Results: Salivary pH was significantly increased(p=0.018) in the experimental group. Salivary IgA levels were not significantly different between the experimental and control groups; however, IgA levels of the experimental group were significantly increased(p=0.006) after time had passed. Halitosis was significantly decreased(p=0.002) in the experimental group. Oral subjective symptom scores were significantly decreased(p=0.000) and oral self care behavior scores were significantly increased(p=0.000) in the experimental group. Conclusion: Regular gingival massage toothbrushing with an essential oil mouthrinse could be an effective oral health nursing intervention for the elderly.

Effect of fibre loading and treatment on porosity and water absorption correlated with tensile behaviour of oil palm empty fruit bunch fibre reinforced composites

  • Anyakora, Anthony N.;Abubakre, Oladiran K.;Mudiare, Edeki;Suleiman, MAT
    • Advances in materials Research
    • /
    • v.6 no.4
    • /
    • pp.329-341
    • /
    • 2017
  • The challenge of replacing conventional plastics with biodegradable composite materials has attracted much attention in product design, particularly in the tensile-related areas of application. In this study, fibres extracted from oil palm empty fruit bunch (EFB) were treated and utilized in reinforcing polyester matrix by hand lay-up technique. The effect of fibre loading and combined influence of alkali and silane treatments on porosity and water absorption parameters, and its correlation with the tensile behaviour of composites was analyzed. The results showed that tensile strength decreased whilst modulus of elasticity, water absorption and porosity parameters increased with increasing fibre loading. The composites of treated oil palm EFB fibre exhibited improved values of 2.47 MPa to 3.78 MPa for tensile strength; 1.75 MPa to 2.04 MPa for modulus of elasticity; 3.43% to 1.68% for porosity and 3.51% to 3.12% for water absorption at respective 10 wt.% fibre loadings. A correlation between porosity and water absorption with tensile behavior of composites of oil palm EFB fibre and positive effect of fibre treatment was established, which clearly demonstrate a connection between processing and physical properties with tensile behavior of fibre composites. Accordingly, a further exploitation of economic significance of oil palm EFB fibres composites in areas of low-to-medium tensile strength application is inferred.

Finite Element Analysis of the Complex Behavior and Load Bearing Characteristics of a Foundation Pile Connector (유한요소해석을 이용한 복합거동 연결체의 하중지지 특성)

  • Shin, Hee-Soo;Kim, Ki-Sung;Hong, Seung Seo;Kim, YoungSeok;Ahn, Jun-Hyuk
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.451-460
    • /
    • 2019
  • In this study, a complex behavior connector is proposed to overcome the problems that may occur when small pile pipe and micro pile is used as a friction pile concept in the lower foundation of an oil sand plant where a piloti foundation is used. The individual settlement and heaving of piles were connected in one group to allow the composite behavior. This study performed to analyze the load carrying capacity to identify a complex behavior. In addition, the shape of the composite behavior connector was examined to apply the advantages of pile-group and piled raft foundations to oil sand plants. A scale model was constructed to measure the behavior of the load. The stability and weakness of the device were selected to determine the shape of the connector using the scale model testing.

Influence of Lubricating Oil Emulsified on the Behaviour of Cavitation Erosion - Corrosion at Bearing Metals (베어링 합금재의 캐비테이션 침식-부식거동에 미치는 유화 윤활유의 영향)

  • 임우조;이진열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.42-49
    • /
    • 1993
  • Recently, because the lubricating oil showed a tendency to be emulsified and oxidized by high speed, high output and the extension of maintenance & conservation of marine engine, the cavitation erosion-corrosion at such an environment became a big problem on effective performance of engine. Therefore, there was a need to study the behavior and protection of erosion-corrosion damage, and then applied inhibitor to a protective method of cavitation erosion- corrosion damage. At this time, test environments were marine lubricating oil & various emulsified oil that mixed distilled water and sea water etc., and also used 20KHz, 24.mu.m piezoelectric vibrator as an experimental apparatus of cavitation erosion. With this apparatus, we investigated an influence of the emulsified oil on characteristics of erosion-corrosion and protection for erosion-corrosion by inhibitor at slide bearing metals.

  • PDF

A Study on the Oil Film Behaviors of Pin Bush Bearings for Diesel Engines with Various Engine Oil Viscosities (오일점도에 따른 디젤엔진용 핀부시 베어링의 유막거동에 관한 연구)

  • Kim, Chung-Kyun;Lee, Byoung-Kwan
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • A pin bush bearing is one of the most important element in the piston engine which is joined a piston to a connecting rod. A pin bush is suffered by heat and changeable repeat loads, which are come from the explosive gas heat and pressures during a reciprocating stroke. Therefore, a tribological behavior of pin bush bearings is very severe compared to other parts of a piston assembly. To keep a stable operation of pin bush bearings effectively, it would be satisfied with proper oil film strength for severe operating conditions and durability, which are strongly related to the oil film thickness, oil film pressure, and a friction loss power. The computed results show that the viscosity of engine oils slightly affects to the minimum oil film thickness and oil film pressure distribution, but is an influential parameter on a total friction loss power. Thus the low viscosity engine oils for an increased operation condition should select a high level of base oil and add a viscosity index improver as an oil film additive.

Effect of Continuous Oil Phase on Preparation of Silver Halide Nanoparticles using AOT-Based W/O Microemulsions (AOT W/O 마이크로에멀젼을 이용한 할로겐화은 나노입자 제조에서 연속상 오일의 영향)

  • Jung, KilYong;Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.364-371
    • /
    • 2007
  • Effects of continuous oil phase on silver halide nanoparticles were investigated where nanoparticles were prepared using two different types of water-in-oil(W/O) microemulsions containing silver and halide, respectively. Phase behavior experiments for ternary systems containing AOT surfactant, hydrocarbon oil and aqueous solution of an inorganic salt showed that the region of one phase W/O microemulsion was found to be broadened with an increase in the alkyl chain length of a hydrocarbon mainly due to an increase in hydrophilic nature of a surfactant. With the information of phase behavior experiments, silver halide nanoparticles were prepared using different AOT-based microemulsion systems and photomicrographs obtained by transmission electron microscopy indicated that about 10 nm size particles of relatively spherical shape were obtained. It has been found that an increase in alkyl chain length of a hydrocarbon results in a decrease in particle size because of higher intermicellar exchange rate among microemulsion drops. The average particle size was also found to increase with the inorganic salt composition of initial aqueous solution.