• Title/Summary/Keyword: Oil Velocity

Search Result 328, Processing Time 0.024 seconds

ON PREDCTION OF CONCENTRATION OF LIQUID FOOD BY ACOUSTIC NON-LINEAR PARAMETER B/A

  • Nishizu, Takahisa;Ikeda, Yoshio
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.344-352
    • /
    • 1993
  • The purpose of this study is to investigate the possibility of the non-destructive quality evaluation for food by the acoustic non-linear parameter B/A which is a measure of the non-linearity of the state equation of the medium in terms of pressure and density. The B/A of water, corn oil O/W(oil in water) emulsion and milk were measured by using a sound velocity measuring system. The B/A value of water was measured for ascertaining reliability of our experimental system. Corn oil W/W emulsion was prepared as a model of milk . It was proved that the B/A value of O/W emulsion was related to the oil concentration by a law of mixture. We applied this result to milk and obtained satisfactory results for predicting the milk fat concentration.

  • PDF

A Study on the Characteristic of the Hydrostatic Bearing in the Hydraulic Cylinder (유압실린더내 정압베어링의 특성에 관한 연구)

  • Kang, Hyung-Sun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.522-527
    • /
    • 2008
  • On designing of hydrostatic bearing, load, quantity of oil, stiffness and friction load are considered as basic characteristics. For the analysis of these basic characteristics, pressure distribution by oil film is obtained. Speed of piston, clearance, leakage of oil, eccentricity, shape and roughness of bearing affect the results which are the analysis of basic characteristics of load, quantity of oil, stiffness and friction load. The relationship among those factors are required for optimum designing of hydrostatic bearing for machining tool. Reynold's Equation is calculated through finite element method. Load, leakage of quantity and pressure distribution as variation of length, land length ratio, eccentricity and axial velocity of bearing are investigated. Then optimum design variables are obtained.

2 Dimensional Correlations of Heat Transfer of Oil Flows over Offset Strip Fins (옵셋 스트립 휜을 가로지르는 오일유동의 열전달 2차원 상관관계식)

  • 강덕종;신성학;정형호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.734-740
    • /
    • 2002
  • In the present study, heat transfer characteristics of oil flow over offset strip fins are predicted by the numerical methods. Oil flow in the plate-fin passage is idealized by 2 dimensions. Inlet velocity, Prandtl number and fin pitch ratio are chosen as parameters which affect the heat transfer of offset strip fins. The effect of parameters on pressure drops and convective heat transfer coefficients are described. Characteristic length is derived in case of 2 dimensional flow situation. Correlations for friction factor and convective heat transfer coefficient are derived.

Design Optimization for Air Ducts and Fluid Pipes at Electromagnetic Pulse(EMP) Shield in Highly Secured Facilities (EMP 방호시설의 덕트 및 배관 최적 설계 방안)

  • Pang, Seung-Ki;Kim, Jae-Hoon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.4
    • /
    • pp.15-24
    • /
    • 2014
  • This study conducted a computational fluid dynamics(CFD) analysis to find an appropriate diameter or sectional area of air ducts and fluid pipes which have an electromagnetic pulse(EMP) shied to protect indoor electronic devices in special buildings like military fortifications. The result shows that the optimized outdoor air intake size can be defined with either the ratio of the maximum air velocity in the supply duct to the air intake size, or the shape ratio of indoor supply diffuser to the outdoor air intake. In the case of water channel, the fluid velocity at EMP shield with the identical size of the pipe, decreases by 25% in average due to the resistance of the shield. The enlargement of diameter at the shield, 2 step, improves the fluid flow. It illustrated that the diameter of downstream pipe size is 1step larger than the upstream for providing the design flow rate. The shield increases friction and resistance, in the case of oil pipe, so the average flow velocity at the middle of the shield increase by 50% in average. In consideration of the fluid viscosity, the oil pipe should be enlarged 4 or 5 step from the typical design configuration. Therefore, the fluid channel size for air, water, and oil, should be reconsidered by the engineering approach when EMP shield is placed in the middle of channel.

Multicomponent RVSP Survey for Imaging Thin Layer Bearing Oil Sand (박층 오일샌드 영상화를 위한 다성분 역VSP 탐사)

  • Jeong, Soo-Cheol;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.234-241
    • /
    • 2011
  • Recently, exploration and development of oil sands are thriving due to high oil price. Because oil sands reservoir usually exists as a thin layer, multicomponent VSP, which has the advantage of the high-resolution around the borehole, is more effective than surface seismic survey in exploring oil sand reservoir. In addition, prestack phase-screen migration is effective for multicomponent seismic data because it is based on an one-way wave equation. In this study, we examined the applicability of the prestack phase-screen migration for multicomponent RVSP data to image the thin oil sand reservoir. As a preprocessing tool, we presented a method for separating P-wave and PS-wave from multicomponent RVSP data by using incidence angle and rotation matrix. To verify it, we have applied the developed wavefield separation method to synthetic data obtained from the velocity model including a horizontal layer and dipping layers. Also, we compared the migrated image by using P-wave with that by using PS-wave. As a result, the PS-wave migrated image has higher resolution and wide coverage than P-wave migrated image. Finally, we have applied the prestack phase-screen migration to the synthetic data from the velocity model simulating oil sand reservoir in Canada. The results show that the PS-wave migrated image describe the top and bottom boundaries of the thin oil sand reservoir more clearly than the P-wave migrated image.

Influence of Refrigeration Oil on Evaporation Heat Transfer Characteristics of R-290 Inside Micro Fin Tube (마이크로 휜 증발관내 냉매 R-290의 열전달 특성에 미치는 냉동유의 영향)

  • Park, Cheol-Min;An, Young-Tae;Lee, Wook-Hyun;Kim, Jeung-Hoon;Kim, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.938-944
    • /
    • 2000
  • Recently, micro fin tube is widely used to heat exchanger for high performance. And, as the alternative refrigerants for R-22, hydrocarbons such as R-290, R-600 and R-600a are very promising because of their low GWP and ODP. Thus, R-290 was used as working fluid in this study. Most design of heat exchanger had been based on heat transfer characteristics of pure refrigerant although refrigerant oil exists in the refrigeration cycles. So, the influence of oil on heat transfer characteristics have to be considered for investigating exact evaporation heat transfer characteristics. But, this is an unresolved problem of refrigeration heat transfer. Therefore the influence of the refrigeration oil to the evaporation heat transfer characteristics of R-290 were conducted in a horizontal micro tin tube. The mineral oil was used as refrigeration oil. The experimental apparatus consisted of a basic refrigeration cycle and a system for oil concentration measurement. Test conditions are as the follows; evaporation temperature $5^{\circ}C$, mass velocity 100 $kg/m^2s$, heat flux 10 $kW/m^2$, oil concentration 0, 1.3, 3.3, 5.7 wt.%, and quality $0.07{\sim}1.0$. When refrigeration oil was entered, oil foaming was observed at the low quality region. And, very small bubbles were observed as quality was increased. Pressure drop and heat transfer coefficient increased as the concentration of refrigeration oil increased to 5 wt.%.. The performance index of heat exchanger was the highest near 3.3 wt.%.

A Study on the Flow Characteristics for the Plate Chamber in Type of Oily Parallel Plate Water Separator (평행판식 유수분리기에서 분리판실의 유동특성에 관한 연구)

  • Kim, J.H.;Han, W.H.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.64-72
    • /
    • 2001
  • According to the regulation of IMO, oil discharge from ships is allowed under 15ppm only and an oil filtering equipment is essential. However, for large ships using heavy fuel oil of over S.G 0.98 and viscosity 380cSt and system oil, it has been in difficulty to process with existing filtering type of oily water separator. A parallel plate type oily water separator which is one of gravity type separators can be used as an assistant equipment for the oil filtering system to meet the present IMO standard of 15 ppm, because it is an efficient method in dealing with a large amount of rich oil with high specific gravity. This work is focused on the fundamental investigation of the performance of the plate type oily water separator by visualization method and PIV(Particle Image Velocimetry) measurement to acquire multi-point velocity data simultaneously. The experimental results showed that the space of the plates acts a significant role in separating process and it was found that an important point to minimize a vortex flow is to flow a large amount of fluid in space of the plates in order to promote the efficiency of separation.

  • PDF

A Study on the Limit Capacity Calculation for Thermal plant based on Air Pollution Control (대기오염에 따른 화력발전소의 한계용량산전에 관한 연구)

  • Yim Han Suck
    • 전기의세계
    • /
    • v.26 no.2
    • /
    • pp.95-98
    • /
    • 1977
  • Commercially available fuel oil for power plant contains relatively much sulphur, which means accordingly high content sulphur deoxide in exhaust gas. Sulphur deoxide has been identified as the worst-pollutant caused by thermal power generation. This paper primarily deals with the stack gas diffusion effects of various parameters, namely vertical stability, wind velocity, exhaust gas velocity, stack height, etc., on the ground concentration. thereof the relation between stack height and maximum plant capacity is analyzed from the standpoint of air pollution prevention. The limit capacity is calculated by means of mean concentration introducing Mead and Lowry coefficient respectively.

  • PDF

The dynamic explicit analysis of auto-body panel stamping process and investigating parameter affects of dynamic analysis (차체판넬 스템핑공정의 동적 외연적해석과 동적해석에 미치는 영향인자 분석)

  • Jung, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.380-390
    • /
    • 1998
  • In the present work a finite element formulation using dynamic explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and direct trial-and-error method. In this work, for economic analysis the faster punch velocity and the mass scaling method are introduced. To investigate the effects of punch velocity and mass scaling, the various values of punch velocity and the various mass scalings are used for numerical analysis. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oil pan and a fuel tank.

Influence of the Distribution of Wind Velocity and Mist Concentration for the Improvement of Efficiency with an Electrostatic Precipitator (전기집진장치의 효율 개선을 위한 풍속 분포 및 입자농도 분포의 영향)

  • 임헌찬;이덕출
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.155-161
    • /
    • 1998
  • Recently, there are widely needs of small scale electrostatic precipitator(ESP) in machine shop and other factories. Since the space of such factories is limited, the improvement of collection efficiency is predominant subject. In this study, we examine the influence of distribution of wind velocity and oil mist concentration inside the ESP in order to improve the performance of the ESP. The distribution of wind velocity and mist concentration is measured respectively in a cross-sectional plane of the ESP. The former is controlled by using a louver which is placed in front of an ionizer and the latter is controlled by lengthening the pipe of entrance of the ESP in order to have plenty of time that mist is dispersed evenly. It is shown that the uniformity of distribution of wind velocity and mist concentration inside the ESP can be getting by adopting a louver with proper shape and lengthening the pipe of entrance and is also contributed to collection efficiency considerably.

  • PDF