• Title/Summary/Keyword: Oil Supply

Search Result 468, Processing Time 0.025 seconds

A Study on Berth Allocation for Navy Surface Vessel Considering Precedence Relationship among Services (서비스 전후 우선순위를 고려한 해군함정의 부두 할당에 관한 연구)

  • 정환식;김승권
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.11a
    • /
    • pp.350-353
    • /
    • 2003
  • Navy surface vessels require pier services such as emergency repair, oil supply, fm loading/unloading, crane, standby readiness, normal repair, gun arrangement, ammunition loading, and food loading during the period in port. The purpose of this study is to establish efficient berth allocation plan for navy surface vessels in home port under the limited resources of piers and equipments. The study suggests Mixed Integer Programing (MIP) model for bath allocation problem, considering precedence relationships among services. For a effective analysis, the model is implemented by ILOG OPL(Optimization Programming Language) Studio 3.1 and ILOG Cplex 7.0. The results of the model show reduction of berth shifts and increasement of service benefits. And thus, it would be a possibility of contribution in the improvement of fleet readiness.

  • PDF

Surveillance System For Extra High Voltage Cable (초고압 CABLE 감시시스템 연구)

  • Hahn, K.M.;Lee, K.C.;Jeon, S.I.;Kim, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.789-793
    • /
    • 1992
  • For improving the power supply reliability and minimizing maintenance work of E.H.V. underground transmission line, new surveillance systems are strongly desired for use in the field of electric power transmission. For underground installation, high system reliability is required because E.H.V. cables, if an accident happen, can have a serious impact on social activities and human life. In answer to this requirement, applications of optical fiber transmission system have been widely developed in a variety of field. The main function of this system are cable fault location, oil leak detection, and surveillance of the cable circuit and tunnel condition.

  • PDF

A Fault Effect to Induced Voltage of Gas Pipeline in Transmission Systems (송전계통에서 고장에 따른 Gas Pipeline 유도전압 분석)

  • Kim, Hyun-Soo;Rhee, Sang-Bong;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1720-1725
    • /
    • 2008
  • Because of the continuous increasing of energy consumption, metallic pipelines are widely used to supply services to customers such as gas, oil, water, etc. Most common metallic pipelines are underground and are now frequently being installed in nearby electric power lines. In recent years, buried gas pipeline close to power lines can be subjected to hazardous induction effects, especially during single line to ground faults. because it can cause corrosion and it poses a threat to the safety of workers responsible for maintenance. Accordingly, it is necessary to take into consideration for analysis of induced voltage on gas pipelines in transmission lines. This paper analyzed the induced voltage on the gas pipelines due to the 154kV transmission lines in normal case and in different faulty case conditions using EMTP (Electro-Magnetic Transients Program).

Study on the Power-Grid Impact and Optimal Charging Control Strategy with PHEV Market Penetration (PHEV 시장 형성 시 전력망에 미치는 영향 및 최적 충전 제어 전략에 관한 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.278-287
    • /
    • 2009
  • Plug-in hybrid electric vehicle (PHEV) with capability of being recharged from the power-grid will reduce oil consumption. Also, the PHEV will affect the utility operations by adding additional electricity demand for charging. In this research, the power-grid impact by demand of PHEV charging is presented and the optimal charging control strategy for utility operators is proposed with simulated data. The penetration of PHEV is assumed to be 50% in the circumstances of Korean passenger car market and Korean power-grid market limitedly. To obtain smooth load shape and utilize the surplus electricity in power-grid at midnight and dawn, the peak of charging demand should be controlled to be located before 4:00 a.m., and the time slot which can supply the electricity power to PHEV should be allowed between 1:00 a.m.$\sim$7:00 a.m.

회전체 진동감소를 위한 마그네틱 댐퍼 설계 및 응용

  • 이봉기;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.769-772
    • /
    • 1995
  • Most turbo machines, which operate at high speeds, such as gas turbines, jet engines, pumps, and compressors are prone to perrturbing vibrations. The best vibration control method for rotors is to eliminate destabilizing factors. Careful balancing application of "more stable" oil-lubricated bearing, such as tilting pad bearings or use of anti-swirl devices in seals, are examplse of passive vibration control methods. the use of magnetic bearing is an active control method. An obvious advantage of active control is that it provides damping (or modifies system stiffness or other parameters) only when there is a need for that, i.e., in emergency states, while not affecting the rotor normal operational conditions. Moreover, active control methods provide exact position control through on-line control. In this study, a magnetic actuator, digital contrliier using DSP, and bipolar operational power supply/amplifiers were developed to show the effectiveness of reducing robot vibration. Also the curve fitting procedure to obtain the transfer function of frequency dependent component was developed. Results presented in this dissertation will provide a well-defined technical parameters in designing magnetic damper system.er system.

  • PDF

Development of Transportation Bio-energy and Its Future (수송용 바이오에너지 개발과 미래)

  • Chung, Jay-H.;Kwon, Gi-Seok;Jang, Han-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Negative environmental consequences of fossil fuels and the concerns about their soaring prices have spurred the search for alternative energy sources. While other alternative energies-like solar, wind, geothermal, hydroelectric, and tidal-offer viable options for electricity generation, around 40% of total energy consumption requires liquid fuels like gasoline or diesel fuel. This is where bio-energy/biofuels is especially attractive, where they can serve as a practical alternative to oil. The production of liquid biofuels for transportation will depend upon a stable supply of large amount of inexpensive cellulosic biomass obtained on a sustainable basis. This paper reviewed development status of transportation bio-energy for vehicles, technical barriers to the production of cellulosic ethanol, and the global future of bio-diesel and ethanol production.

Analytical and sensitivity approaches for the sizing and placement of single DG in radial system

  • Bindumol, E.K.;Babu, C.A.
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.163-176
    • /
    • 2016
  • Rapid depletion of fossil based oil, coal and gas reserves and its greater demand day by day necessitates the search for other alternatives. Severe environmental impacts caused by the fossil fire based power plants and the escalating fuel costs are the major challenges faced by the electricity supply industry. Integration of Distributed Generators (DG) especially, wind and solar systems to the grid has been steadily increasing due to the concern of clean environment. This paper focuses on a new simple and fast load flow algorithm named Backward Forward Sweep Algorithm (BFSA) for finding the voltage profile and power losses with the integration of various sizes of DG at different locations. Genetic Algorithm (GA) based BFSA is adopted in finding the optimal location and sizing of DG to attain an improved voltage profile and considerable reduced power loss. Simulation results show that the proposed algorithm is more efficient in finding the optimal location and sizing of DG in 15-bus radial distribution system (RDS).The authenticity of the placement of optimized DG is assured with other DG placement techniques.

Design of Compact Magneto-Rheological Fluid Damper for Artificial Low-Limb Prosthesis (Magneto-Rheological Fluid를 이용한 인공지능 의족의 Compact damper 개발)

  • Sung, So-Young;Kang, S.J.;Moon, I.H.;Moon, M.S.;Jang, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2962-2964
    • /
    • 2005
  • Magneto-Rheological (MR) fluid is suspension of fine magnetic particles in a liquid carrier such as silicon oil or water. MR fluid exhibits solid-like mechanical behavior into chain or clusters with high yield stress when magnetic field is applied to the particles. The response of MR fluids is very quick and reversible after removal of the field. MR Fluids have high yield stress (up to 5kPs) and operate in low voltage power supply. Recently, MR damper using MR fluids was open used in vibration control system such as structural devices, seat vibration controllers and helicopter rotor systems, but it is too big in size and heavy. Therefore, it is not appreciate to rehabilitation devices such as prosthetic limbs.

  • PDF

AN FORMULATION OF THE ENERGY MODEL FOR THE KOREAN ENERGY INDUSTRY

  • Kim, Jong Duck
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.12 no.20
    • /
    • pp.55-61
    • /
    • 1989
  • The main contribution this research is the development of methodology which is capable of solving problems associated with the capacity expansion and operating schedule of energy industries. The principal concern of such industries is the proper allocation of primary energy which are required for the production of sufficient supply of electricity and petroleum products for the Korea`s energy needs. Nonlinear programming models are developed for power generation expansion planning and for the oil refinery industry. In order to deal with uncertainties about future demands for final energy, chance-constrained programming is used to formulate appropriate constraints. The methodology of the model can be used to evaluate Korean energy and expansion planning in the energy industry, especially the electric power generation industry and the refinery industry.

  • PDF

Lightning protection in an 154kV GIS connected by oil-filled cables (O.F. Cable에 연결된 154kV GIS의 뇌보호)

  • 정태호
    • 전기의세계
    • /
    • v.29 no.5
    • /
    • pp.315-320
    • /
    • 1980
  • It has been appeared and widely used today SF6 Gas Insulated Substation(Hereafter called GIS) for the power supply to the densely populated area due to the superior insulation withstand ability of SF6 Gas. And to maximize the compact effect of this substation, it is normal practice to connect underground cables. If it is possible to elieminate the redundant lightning arresters using the physical characterestics of travelling waves in underground cables, economical advantages can be obtained together with easy maintenances. It is presented in this paper the possiblity of eliminating the transformer protection lightning arresters under some conditions for the 154kV GIS's (BIL:750kV) which Korea Electric Co. plans to construct using the general purpose digital computer program.

  • PDF