• Title/Summary/Keyword: Oil Recovery Rate

Search Result 84, Processing Time 0.025 seconds

Surface Milling for the Study of Pore Structure in Shale Reservoirs (셰일 저류층 내 공극 구조 연구를 위한 표면 밀링)

  • Park, Sun Young;Choi, Jiyoung;Lee, Hyun Suk
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.419-426
    • /
    • 2020
  • Understanding the pore structure including pore shape and connectivity in unconventional reservoirs is essential to increase the recovery rate of unconventional energy resources such as shale gas and oil. In this study, we found analysis condition to probe the nanoscale pore structure in shale reservoirs using Focused Ion Beam (FIB) and Ion Milling System (IMS). A-068 core samples from Liard Basin are used to probe the pore structure in shale reservoirs. The pore structure is analyzed with different pretreatment methods and analysis condition because each sample has different characteristics. The results show that surface milling by FIB is effective to obtain pore images of several micrometers local area while milling a large-area by IMS is efficient to observe various pore structure in a short time. Especially, it was confirmed that the pore structure of rocks with high content of carbonate minerals and high strength can be observed with milling by IMS. In this study, the analysis condition and process for observing the pore structure in the shale reservoirs is established. Further studies are needed to perform for probing the effect of pore size and shape on the enhancement of shale gas recovery.

Residual Pesticide Analysis Method of Edible Oil via Heat Distillation Methods (가열증류법에 의한 식용유지의 잔류농약 분석법 개발)

  • Mi-Hui Son;Jae-Kwan Kim;Young-Seon Cho;Na-Eun Han;Byeong-Tae Kim;Myoung-Ki Park;Yong-Bae Park
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.3
    • /
    • pp.89-98
    • /
    • 2023
  • Currently, no guidelines exist regarding the maximum residues of pesticides in edible oil which is a processed food commonly consumed in Korea. This lack of guidelines hinders the evaluation of the safety of edible oil in terms of pesticide contamination. In this study, an analysis method based on heat distillation and GC-MS/MS was established by optimizing the extraction and purification procedure for 68 pesticides. Important variables in the thermal distillation procedure included heating temperature and time, and we found the nitrogen flow rate as a mobile phase and the type of dissolving solvent were not considerably affected. The determination coefficient (R2) of the residual pesticide was 0.99 or higher, and the quantitative limit (LOQ) was 0.01-0.02 mg/L. The average recovery rate (n=5) was 66.1-120.0% and the relative standard deviation was lower than ±10% when 68 pesticides were spiked at concentrations of 0.01-0.02, 0.1, and 0.5 mg/L. In addition, the within-laboratory precision was less than ±11%, meeting the Korea Food and Drug Safety Evaluation Institute's Guidelines on Standard Procedures for Preparing Food Testing Methods (2016). Therefore, the test method developed in this study can be used as a test method for managing the safety of the residual pesticide concentration in edible oil.

Clean Flotation Process to Recycle useful Materials from Fly Ash (비산재로부터 유용성분을 회수하는 청정부유선별공정)

  • Han, Gwang Su;Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.177-185
    • /
    • 2020
  • All coal ash, generated from coal-fired power plants, is entirely dumped onto a landfill site. As coal ash contains 80% fly ash, a clean floating process was developed in this study to recover useful components from coal ash and to use them as high value-added industrial materials. When the unburned carbon (UC) was recovered from the fly ash, soybean oil, an eco-friendly vegetable oil, was used as collector instead of a non-ionic kerosene collector to prevent the occurrence of odor from the kerosene. After the UC was separated by flotation, particulate ceramic microsphere (CM) was recovered, without generating acidic wastewater, through hydro-cyclone instead of sulfuric acid solution in order to separate ceramic microsphere (CM) and cleaned ash (CA) from the residue. By utilizing soybean oil as a collector, the recovery rate of UC turned high at 85.8% due to the increased adsorption of UC, the high viscosity of soybean oil, and the increase in floating properties caused by the linoleic acid contained in soybean oil. All of the combustible components contained in the recovered UC were carbon components, with the carbon content registering high when soybean oil was used. The recovered UC had many pores with a rough surface; thus, it could be easily ground and then used as an industrial material for its fine particles. The CM and CA recovered by the clean separation process using hydro-cyclone had a spherical shape, and the particles were clearly separated without clumping together. The average diameter (D50) of the particles was 5 ㎛, so it was possible to realize the atomization of CM through a process change.

Study on the distribution law and influencing factors of pressure field distribution before exploitation in heavy oilfield

  • Zhang, Xing;Jiang, Ting T.;Zhang, Jian H.;Li, Bo;Li, Yu B.;Zhang, Chun Y.;Xu, Bing B.;Qi, Peng
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.205-213
    • /
    • 2019
  • A calculation model of reservoir pressure field distribution around multiple production wells in a heavy oil reservoir is established, which can overcome the unreasonable uniform-pressure value calculated by the traditional mathematical model in the multiwell mining areas. A calculating program is developed based on the deduced equations by using Visual Basic computer language. Based on the proposed mathematical model, the effects of drainage rate and formation permeability on the distribution of reservoir pressure are studied. Results show that the reservoir pressure drops most at the wellbore. The farther the distance away from the borehole, the sparser the isobaric lines distribute. Increasing drainage rate results in decreasing reservoir pressure and bottom-hole pressure, especially the latter. The permeability has a significant effect on bottom hole pressure. The study provides a reference basis for studying the dynamic pressure field distribution before thermal recovery technology in heavy oilfield and optimizing construction parameters.

Low Temperature Pyrolysis for Valuable Resources Recovery from Waste Wire (I) (폐전선으로부터 유가자원 회수를 위한 저온열분해(I))

  • Han, Seong-Kuk;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.223-226
    • /
    • 2009
  • In this study, we investigated the recovery of copper and synthetic fuel from the waste wire by low temperature pyrolysis which can overcome problems of the recent incineration methods. Through thermal decomposition process of waste wire, we achieved the big advantage of getting usable resources as the forms of copper and fuel with a very high value. The TG/DTA and small-scale reaction experiments were carried out to determine an optimum temperature for waste wire pyrolysis. And the pyrolysis was done at 350, 450, and $550^{\circ}C$, respectively, and heating rate of the TG/DTA was $5^{\circ}C/min$ untill $700^{\circ}C$. The result shows that the optimum temperature range for dehydrochlorination of PVC was $280{\sim}350^{\circ}C$, as a lower temperature range than $400{\sim}550^{\circ}C$ of PE and PP. Practically over 95% of copper metal and synthetic fuel, which has the 8027 kcal/kg as a calorific value, were recovered from the waste wire samples.

A Feasibility Study on Shale Gas Plant Water Treatment by Direct Contact Membrane Distillation (셰일가스 플랜트 용수 처리를 위한 직접 접촉 막 증발법 적용 가능성 연구)

  • Koo, Jae-Wuk;Han, Jihee;Lee, Sangho;Hong, Seungkwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.56-60
    • /
    • 2013
  • Non-conventional oil resources such as shale gas are becoming increasingly important and have drawn the attention of several major oil companies all over the world. Nevertheless, the market-changing growth of shale gas production in recent years has resulted in the emergence of environmental and water management challenges. This is because the water used in the hydraulic fracturing process contains large amount of pollutants including ions, organics, and particles. Accordingly, the treatment of this flowback water from shale gas plant is regarded as one of the key technologies. In this study, we examined the feasibility of membrane distillation as a treatment technology for the water from shale gas plants. Direct contact membrane distillation (DCMD) is a thermally-driven process based on a vaper pressure gradient across a hydrophobic membrane, allowing the treatment of feed waters containing high concentration of ions. Experiments were carried out put in the lab-scale under various conditions such as membrane types, temperature difference, flow rate and so on. Synthetic feed water was prepared and used based on the data from literature. The results indicated that DCMD is suitable for treating not only low-range flowback water but also high-range flowback water. Based on the theoretical calculation, DCMD could have over 80% of recovery. Nevertheless, organic pollutants such as oil and surfactant were identified as serious barriers for the application of MD. Further works will be required to develop the optimum pretreatment for this MD process.

Heat Recovery Characteristics of the Hot Water Supply System with Exhaust Heat Recovery Unit Attached to the Hot Air Heater for Plant Bed Heating in the Greenhouse (온풍난방기의 배기열을 이용한 지중 난방용 온수공급시스템의 열회수특성)

  • 김영중;유영선;장진택;강금춘;이건중;신정웅
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.221-226
    • /
    • 2000
  • Hot air heater with light oil burner is the most common heater for greenhouse heating in the winter season in Korea. However, since the thermal efficiency of the heater is about 80∼85%, considerable unused heat amount in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The heat recovery system is made for plant bed or soil heating in the greenhouse. The system consisted of a heat exchanger made of copper pipes, ${\Phi}12.7{\times}0.7t$ located in the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tank. The total heat exchanger area is 1.5$m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to the performance test it could recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690\ell$/hr from the waste heat discharged. The exhaust gas temperature left the heat exchanger dropped to $100^{\circ}C$ from $270^{\circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{\circ}C$ from $21^{\circ}C$ at the water flow rate of $690\ell$/hr. By the feasibility test conducted in the greenhouse, the system did not encounter any difficulty in operations. And, the system could recover 220,235kJ of exhaust gas heat in a day, which is equivalent of 34% of the fuel consumption by the water boiler for plant bed heating of 0.2ha in the greenhouse.

  • PDF

Development of Microbubble Flotation Technique for the Production of High Grade Coal (Microbubble Flotation에 의한 고품위(高品位) 석탄생산(石炭生産) 기술(技術) 개발(開發))

  • Han, Oh-Hyung;Park, Sin-Woong;Kim, Byoung-Gon
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.44-52
    • /
    • 2012
  • The purpose of this study is to confirm the possibility of obtaining high grade coal from fixed carbon 20.68% coal. Also, the mineralogical, physical/chemical and liberation characteristics was found with the aim of decrease in ash amount, during the pre-processing of clean coal technology. In this study, batch flotation and microbubble column flotation that was appropriate for the processing of fine particles was used with the variation in kinds and quantity of frother, collector and depressant. Also grinding time, air flow rate and feeding rates were examined. As a result of batch flotation, using pulp density 20%, collector DMU-101+dodecyl amine(100 mL/ton), frother pine oil (200 mL/ton), depressant sodium silicate(1 kg/ton), obtained the result of ash rejection 81.55% and combustible recovery 70.23%. In result of microbubble column flotation, the result was ash rejection 83.85% and combustible recovery 70.42% under the condition of pulp density 5%, grinding time 5 min. collector DMU-101+DDA(100 mL/ton), frother AF65(5.4 L/ton), depressant SMP(3.5 kg/ton), wash water(360 mL/min.) and air flow rate(1,197 mL/min.).

Effects of Aging and Soil Texture on Composting of Diesel-Contaminated Soil (디젤오염기간 및 토성이 오염토양 콤포스팅 처리에 미치는 영향)

  • Choi, Jung-Young;Namkoong, Wan;Park, Joon-Seok;Hwang, Eui-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.132-139
    • /
    • 2002
  • This study was carried out to investigate the effects of aging and soil texture on composting of diesel-contaminated soil. The soils used for this study were silt loam and sand. Target contaminant, diesel oil, was spiked at 10,000mgTPH/kg of dry soil. Aging times of diesel-contaminated soils were 15days and 60days, respectively. Fresh diesel-contaminated soil was also investigated. Moisture content was controlled to 70% of soil field capacity. Mix ratio of soil to sludge was 1:0.3 as wet weight basis. Temperature was maintained at $20^{\circ}C$ Volatilization loss of TPH was below 2% of initial concentration. n-Alkanes lost by volatilization were mainly by the compounds of C10 to C17. Diesel in contaminated soil was mainly removed by biodegradation mechanism. First order degradation rate constant of TPH in sandy soil was ranged from 0.081 to 0.094/day, which is higher than that in silt loam(0.056-0.061/day). From fresh to 60day-aged soils, there was little difference of TPH biodegradation rate between the soils. Carbon recovery ranged from 0.61 to 0.89. TPH degradation rate was highly correlated with $CO_2$ production rate.

  • PDF

Purification of Eicosapentaenoic Acid (EPA) by Density Gradient Supercritical $CO_2$ Chromatography (밀도구배 초임계 $CO_2$ 크로마토그래피에 의한 Eicosapentaenoic Acid (EPA) 정제)

  • 유병삼;변상요
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.109-113
    • /
    • 1999
  • Supercritical $CO_2$ chromatography was applied for purification of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil. Various supercritical $CO_2$ pressures were tested to find out the pressure effects on solubility and selectivity of low fatty acids in the silver nitrate column. The solubility of low fatty acids was increased as the supercntical $CO_2$ Pressure increased. However, the selectiviy between low fatty acids and EPA waw decreased. Stepwise density gradient method was applied to increase the purification efficiency of EPA. Low fatty acids were easily separated at the early elution steps with low $CO_2$ densities. Successive fractions containing 92.1~97.8% of EPA were collected. The average concentration of three purified fractions was 95.6% with the recovery rate of 30%.

  • PDF