• Title/Summary/Keyword: Oil Damper

Search Result 101, Processing Time 0.034 seconds

Dynamic Behavior of a Symmetric Cylinder Type Hydraulic Damper for Semi-Active Control (반능동 제어용 대칭 실린더형 유압 감쇠기의 동적 거동)

  • Lee, I.Y.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.82-87
    • /
    • 2002
  • For the dynamic behavior evaluation of a semi-active vibration control system, it is very important to use an accurate mathematical model for the hydraulic damper applied to the control system. In this study, a mathematical model for a symmetric type hydraulic damper was suggested. In this model, the effects of gas volume and oil temperature variation on the bulk modulus of oil were considered. The dynamic behavior of the damper was investigated by experiments and simulations. It was confirmed that the pressure variation, damping force, and mean pressure variation could be estimated with comparatively good precision by the suggested mathematical model. Moreover, it was shown that excessive pressure rise can be generated by the oil expansion due to the heat energy transformed from the exciting energy of the damper for a short period of the damper operation.

  • PDF

The Transmissibility of the Compact Disc Player due to Temperature (온도변화에 기인한 컴팩트디스크 플레이어의 전달률)

  • Lee, Tae-Keun;Kim, Byoung-Sam;Chi, Chang-Heon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.967-972
    • /
    • 2009
  • To investigate the vibration characteristics of compact disc player(CDP) due to excited vibration and disturbances, it is necessary to consider the transmissibility of the CDP. The disturbances as well as the temperature in the vehicle are the one of the important factors when CDP is designed. In this study, the effect on the temperature of the oil damper, which is applied to anti-vibration system of the CDP, was investigated. When the temperature was changed from $-30^{\circ}C$ to $90^{\circ}C$ and the properties of the oil damper (hardness of rubber, viscosity of oil) were changed, the transmissibility was measured. When the damper rubber has the large hardness, the difference of the transmissibility and natural frequency due to temperature showed the remarkable change as compared with the those of damper viscosity.

Shaking table test and numerical analysis of a combined energy dissipation system with metallic yield dampers and oil dampers

  • Zhou, Qiang;Lu, Xilin
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.187-201
    • /
    • 2004
  • A shaking table test on a three-story one-bay steel frame model with metallic yield dampers and their parallel connection with oil dampers is carried out to study the dynamic characteristics and seismic performance of the energy dissipation system. It is found from the test that the combined energy dissipation system has favorable reducing vibration effects on structural displacement, and the structural peak acceleration can not evidently be reduced under small intensity seismic excitations, but in most cases the vibration reduction effect is very good under large intensity seismic excitations. Test results also show that stiffness of the energy dissipation devices should match their damping. Dynamic analysis method and mechanics models of these two dampers are proposed. In the analysis method, the force-displacement relationship of the metallic yield damper is represented by an elastic perfectly plastic model, and the behavior of the oil damper is simulated by a velocity and displacement relative model in which the contributions of the oil damper to the damping force and stiffness of the system are considered. Validity of the analytical model and the method is verified through comparison between the results of the shaking table test and numerical analysis.

A Study on the Characteristics of Dynamic Vibration Absorber with Coil Spring and Oil Damper (코일스프링과 오일댐퍼를 가지는 동흡진기의 특성에 관한 연구)

  • 김광식;안찬우
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.170-175
    • /
    • 1988
  • A study on the dynamic vibration absorber with coil spring and oil damper was carried out both theoretically and experimentally. A main mass is attached to a foundation using coil spring and oil damper. A harmonic motion was applied to the foundation. The effects of the dynamic vibration sbsorber are theoretically summarized in graphs, and tested on a vibratory model for the isolation of actual mechanical vibration. As a result, the first resonance amplitude ratio increased and the second resonance amplitude ratio decreased as the absorber spring constant increased. When the absorber mass increase, the first resonance amplitude ratio is decreased and the second resonace amplitude ratio is increased.

  • PDF

Optimum design of propulsion shafting system considering characteristics of a viscous damper applied with high-viscosity silicon oil (고점도 실리콘오일 적용 점성댐퍼 동특성을 고려한 추진축계 최적 설계)

  • Kim, Yang-Gon;Cho, Kwon-Hae;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.202-208
    • /
    • 2017
  • The recently developed marine engines for propulsion of ships have higher torsional exciting force than previous engines to improve the propulsion efficiency and to reduce specific fuel oil consumption. As a result, a viscous damper or viscous-spring damper is installed in front of marine engine to control the torsional vibration. In the case of viscous damper, it is supposed that there is no elastic connection in the silicon oil, which is filled between the damper housing and inertia ring. However, In reality, the silicon oil with high viscosity possesses torsional stiffness and has non-linear dynamic characteristics according to the operating temperature and frequency of the viscous damper. In this study, the damping characteristics of a viscous damper used to control the torsional vibration of the shafting system have been reviewed and the characteristics of torsional vibration of the shafting system equipped with a corresponding viscous damper have been examined. In addition, it is examined how to interpret the theoretically optimal dynamic characteristics of a viscous damper for this purpose, and the optimum design for the propulsion shafting system has been suggested considering the operating temperature and aging. when the torsional vibration of the shafting system is controlled by a viscous damper filled with highly viscous silicon oil.

Development and Evaluation of a Hybrid Damper for Semi-active Suspension (반능동 현가장치의 하이브리드형 댐퍼 개발에 관한 연구)

  • Jin, Chul Ho;Yoon, Young Won;Lee, Jae Hak
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.38-49
    • /
    • 2018
  • This research describes the development model and testing of a hybrid damper which can be applicable to a vehicle suspension. The hybrid damper is devised to improve the performance of a conventional passive oil damper using a magneto-rheological (MR) accumulator which consists of a gas accumulator and a MR device. The level of damping is continuously variable by the means of control in the applied current in a MR device fitted to a floating piston which separates the gas and the oil chamber. A simple MR device is used to resist the movement of floating piston. At first a mathematical model which describes all flows within the conventional oil damper is formulated, and then a small MR device is also devised and adopted to a mathematical model to characterize the performance of the device.

Design of Throttle Orifices for an Aircraft Door Damper (항공기의 도어 댐퍼용 교축 오리피스의 설계)

  • Kwon, Y.C.;Kim, C.H.;Hong, Y.S.;Kim, S.B.
    • Journal of Drive and Control
    • /
    • v.9 no.3
    • /
    • pp.23-28
    • /
    • 2012
  • In this study the flow rate-to-pressure difference characteristics of short-tube type damping orifices for an aircraft door damper were investigated by CFD analyses and experiments. As the design parameters of the damping orifice its diameter, inlet and outlet angle, tube length and the viscosity of the working fluid were taken into consideration. The results showed that the discharge coefficient of the orifices are dependant on the inlet and outlet angle and the oil viscosity, while their length plays an little significant role. Although the short-tube type damping orifice was employed to induce a turbulent flow, their discharge coefficient decreases rapidly as the oil viscosity gets higher than 50mm2/s. Therefore, in order to determine the orifice size, satisfying the working temperature range of the door damper, the oil viscosity as well as the friction force on the damper piston should be kept within proper values. For the verification of the CFD analysis results the actual performance of a door damper was measured and compared with them.

An Experimental Study on Improvement of the Stability of Plane Journal Bearing using Leaf Spring Damper (겹판스프링댐퍼를 이용한 저어널베어링의 안정성 향상에 관한 실험적연구)

  • 최영준;김종수;제양규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.153-158
    • /
    • 2000
  • The purpose of present paper is to prove an improvement on stability of plane Journal bearing due to the leaf spring damper(LSD) experimentally A flexible rotor system is designed and manufackuea in order to generate oil whip instability of journal bearing at relative lower rotating speed. Vibration amplitude and instability onset speeds are investigated for a conventional plane journal bearing and plane journal bearing with LSD. To investigate the damping effects of LSD on stability of bearing, experiments are also conducted on the leaf spring dampers with and without working oil. It is found that the leaf spring damper can considerably increase the instability onset speed of a plane journal bearing.

  • PDF

An Experimental Study on Improvement of the Stability of Plane Journal Bearing using Leaf Spring Damper (겹판스프링댐퍼를 이용한 저어널베어링의 안정성 향상에 관한 실험적연구)

  • 최영준;김종수;제양규
    • Tribology and Lubricants
    • /
    • v.17 no.3
    • /
    • pp.185-190
    • /
    • 2001
  • The purpose of present paper is to prove an improvement on stability of plane journal bearing due to the leaf spring damper (LSD) experimentally. A flexible rotor system is designed and manufactured, in order to generate oil whip instability of journal bearing at relative lower rotating speed. Vibration amplitude and instability onset speeds are investigated for a conventional plane journal bearing and plane journal bearing with LSD. To investigate the damping effects of LSD on stability of bearing, experiments are also conducted on the leaf spring dampers with and without working oil. It is found that the leaf spring damper can considerably increase the instability onset speed of a plane Journal bearing.

Optimum Design of Cross Section Lateral Damper Oil Seals for High Speed Railway Vehicle (고속 철도 차량 횡댐퍼 오일 씰의 형상 단면 최적설계)

  • Hwang, Ji-Hwan;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.579-584
    • /
    • 2017
  • The damper oil seal of a high-speed railway vehicle is made from nitrile butadiene rubber (NBR) in order to prevent lubricant from leaking into the damper and to stop harmful contaminants from entering the external environment while in service. Oil leakage through the seal primarily occurs from fatigue failure of the damper. Cumulative damage of the seal occurs due to the contact force between the rod and the rubber during movement due to track irregularities and cants, among other factors. Thus, the design of the oil seal should minimize the maximum principal strain at weak points. In this study, the optimal cross section of the damper oil seal was found using the multi-island genetic algorithm method to improve the durability of the damper. The optimal shape of the oil seal was derived using process automation and design optimization software. Nonlinear material properties for finite element analysis (FEA) of the rubber were determined by Marlow's model. The nonlinear FEA confirmed that the maximum principal strain at the oil leakage point was decreased 24% between the initial design and the optimum design.