• 제목/요약/키워드: Oil Burner

검색결과 60건 처리시간 0.019초

스월 유동을 이용한 오일 버너의 연소성능분석 (Analysis on Combustion Characteristics of the Oil Burner using Swirl Flow)

  • 최창우;김영환;정재현;박권하
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1-8
    • /
    • 2005
  • This paper addresses the analysis of the combustion characteristics in the oil burner using swirl flow. The reduction of exhaust emissions and high efficiency combustion techniques of the industrial burner have been studied to conserve environmental resources. We make swirl burner equal to dimension of wide burner and it is turn round of the combustion gas in construction. For a vigorous inner flow possessde 3m/s velocity in combustion gas of two burners. In calculation, we make use of a densely mesh to detailed analysis. In this study, the effect of swirl flow on the combustion of a commercial burner is analysed by experimental and also simulative manner. The results show the swirl burner has 40% better efficiency and less emissions of CO, HC, NOx and Smoke.

  • PDF

이단중유연소 버너의 수치해석적 연구 (Flame simulation on the two stage heavy oil combustion)

  • 이승수;김혁주;박병식;김종진;최규성
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.209-214
    • /
    • 2002
  • Computations were performed to investigate the flow, temperature and pollutants in two stage heavy-oil combustion burner. The burner geometry and flow conditions were provided by a burner company. The goal of the study is to understand combustion phenomena according to each air inlet's velocity, excessive air ratio and air temperature through CFD. Air flow rates at two inlets are adjusted by a damper inside a burner. Here, injection conditions of liquid fuel are kept constant throughout all simulations. This assumption is made in order to limit the complexity of oil combustion though it may cause some disagreement. The final goal of this research is to design a Low-NOx heavy oil combustion burner through comparison between computational study and experimental ones. Besides experiments, simulation works can give us insights into heavy oil combustion and help us design a Low NOx burner while saving time and cost. The computational study is based on k-e model, P-1 radiation model(WSGGM) and PDF, and is implemented on a commercial code, FLUENT.

  • PDF

다단연소를 이용한 저 NOx 버너의 연소특성에 관한 연구 (An Experimental Study on the Combustion Characteristics in Low Emission Multi-Staged Oil Burner)

  • 안국영;김한석;조은성
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.101-108
    • /
    • 1997
  • The characteristics of combustion and emissions in multi-staged oil burner have been experimentally studied for the various range of equivalence ratios, drop sizes and fuel formulations. Malvern system was used to measure droplet size of fuel. Light fuel oil and light fuel oil doped with pyridine($C_5H _5N$) were used to investigate the effects on fuel NOx emission. The emissions of NO and CO in exhaust gas and the flame temperatures were measured by the gas analyzer and thennocouples. NOx emissions were increased by increasing the excess air ratio (range:$lambda=1.1-1.4$) or decreasing the SMD of droplet in single-staged burner. In comparison with the single-staged burner, the emission of NOx in multi-staged burner was reduced by 50% but CO emission was slightly increased. It is found that multi-staged burner has a good capability in reducing thermal NOx resulting from the distributed heat release rate and lower flame temperature in fuel-rich and fuel-lean combustion zone. Moreover, the fuel NOx emission of the multi-staged burner is lower than that of single-staged burner, because multi-staged burner has fuel rich zone where fuel N is converted to $N_2$ more than NO. In 3-staged burner, the percentage of each stage combustion air have strong influence on emission characteristics. It is also found that NOx emission can be reduced by decreasing inner and outer air percentage or increasing middle air flow rate and CO emission is vice versa.

  • PDF

산업 보일러용 오일버너에서의 저 NOx 연소 연구 (A Study on Low-NOx Combustion in an Oil Burner for an Industrial Boiler)

  • 신명철;김세원;박주원;방병열;양원;고영건
    • 한국연소학회지
    • /
    • 제14권1호
    • /
    • pp.19-24
    • /
    • 2009
  • A novel low NOx oil burner of 0.7 MW (for a 1 ton steam/hr industrial boiler) was designed and tested to investigate the combustion characteristics through in-flame measurement and flue gas analysis. Flame shape was observed by CCD camera and $CH^*/{C_2}^*$ radical distribution in the flame were observed, along with measurement of flue gas composition such as NOx and CO, for various heat inputs, excess airs and pressure of the fuel spary nozzles. The flame showed the two-zone structure: fuel-rich and fuel-lean zone, which was very favorable for the low-NOx combustion, and the NOx emission for haevy oil combustion was significantly reduced to < 150 ppm at 4 % $O_2$, compared with the NOx level of a conventional heavy oil burner.

  • PDF

자트로파 유(Crude Jatropha Oil)에 대한 보일러 직접 연소 특성 (Experimental Study on Thermal Characteristics of Heat Exchanger Modules for Multi Burner Boiler)

  • 강새별;김종진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2934-2939
    • /
    • 2008
  • We conducted a test of a direct burning of crude Jatropha oil (CJO) in a commercial boiler system. The fuel, crude Jatropha oil is not biodiesel which comes from transeterification process of bio oil, but it is pure plant oil. The higher heating value (HHV) of the CJO is 39.3 MJ/kg (9,380 kcal/kg) and is higher than that of a commercial heating oil, 37.9 MJ/kg. The kinematic viscosity of CJO is 36.2 mm2/s at $40^{\circ}C$ and 8.0 mm2/s at $100^{\circ}C$. The burner used in the test is a commercial burner for a commercial heatingoil and its capacity is 140 kW (120,000 kcal/h). We did a preliminary test whether the combustion is stable or not. The preliminary test was a kind of open air combustion test using the commercial burner with crude Jatropha oil. We found that the combustion can be stable if the crude Jatrophaoil temperature is higher than $90^{\circ}C$. We measured the flue gas concentration by using a gas analyzer. The NOx concentration is $80{\sim}100\;ppm$ and CO concentration is nearly 0 ppm at flue gas O2 concentration of 3.0 and 4.5%.

  • PDF

유류 연소 발전용 보일러에서 공기 공급 계통의 불균일성에 관한 실험적 연구 (An Experimental Study on the Non-Uniform Flow Distribution in the Windbox of an Oil-Fired Boiler)

  • 고영건;김영주;최상민
    • 한국연소학회지
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2006
  • Oil-fired power plant usually uses several burners and combustion air is supplied to each burner through the complicated duct which is called windbox. A windbox should be designed to supply combustion air to each burner uniformly but, due to the complicated duct shape, flow distribution in the windbox is unbalanced and non-uniform supplies of combustion air are induced by these unbalanced flows in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated for the uniform flow distribution. In this study, computational simulation method was used to investigate the flow distribution in a windbox and measured the velocities at the exit of burners in a real windbox and model tests to compare with CFD results. The results show two significant flow patterns. One is that the flow rates of each burner are different from each other and this means that all burners operate in different conditions of air to fuel ratio. The other is that the flow distribution at the exit of each burner is not axi-symmetric although the burner shape is axi-symmetric. Additionally some modifications of windbox shape and installation of baffles were proposed to make the uniform flow in the windox.

  • PDF

온풍난방기용 건타입 중유버너의 분사특성과 연소특성 (Spraying and Combustion Characteristics of Heavy Oil in the Gun Type Burner for Hot Air Heater)

  • 김영중;유영선;장진택;윤진하;연태용
    • Journal of Biosystems Engineering
    • /
    • 제24권2호
    • /
    • pp.107-114
    • /
    • 1999
  • To find the best combustion conditions in the heavy oil burner kinetic viscosity of heavy oil A, B and C at different temperature range, from 40 to 140$^{\circ}C$, and the droplet sizes of the heavy oils at different temperature and pump pressure were measured. And, combustion characteristics were investigated under the different conditions : two different heavy oil and three different oil temperature. At temperature of 70, 100, 130$^{\circ}C$ the kinetic viscosity of heavy oil A and B are 7.9, 5.7, 4.3 and 30.4, 13.7, 7.9cSt, respectively. The greatest and smallest viscosity were 7,455 cSt at C oil on 27$^{\circ}C$ and 4.26cSt at A oil on 140$^{\circ}C$. The magnitude of viscosity difference between at 100$^{\circ}C$ and 140$^{\circ}C$ under 6 cSt in cases of A and B oil, but more than 30cST on C oil. Of the droplet sizes, the biggest and smallest droplet size in A oil were 98$\mu\textrm{m}$ at oil temperature of 130$^{\circ}C$(4.3cSt), pump pressure of 1.57MPa and 72$\mu\textrm{m}$ at 70$^{\circ}C$(7.9cSt), 2.35MPa, respectively. It appeared that as spraying pressure increased the droplet size decreased, however, no distinct differences were found in the effects of kinetic viscosity on the droplet sizes of the test range. The best combustion performance was observed when droplet size, spraying pressure and oil temperature were 73$\mu\textrm{m}$, 2.35MPa and 70$^{\circ}C$ producing CO2 of 13.1%, CO of 13ppm and flue gas temperature of 250$^{\circ}C$ in A oil combustion For B oil, it was100$^{\circ}C$, 2.35MPa, 52$\mu\textrm{m}$, producing CO2 of 10ppm and flue gas temperature of 260$^{\circ}C$. In general, it appeared that better combustion results were observed in the smaller droplets produced burner condition.

  • PDF

오일 버너에 있어서 분무거동과 공기유동의 상호작용에 관한 수치해석 (Numerical Simulation of Spray Behavior and Its Interaction with Air Flow in Oil Burner)

  • 나가지마
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권3호
    • /
    • pp.320-330
    • /
    • 1999
  • A numerical study was performed to investigate spray behavior and its interaction with air flow in a flame holding region of an oil burner(0.1MW) using the KIVA3 code. The numerical results in shape of the recirculating flow and size of the recirculation zone under different conditions were compared to those experimental results. The numerical results in fuel droplet trajectory show that a droplet under 30${\mu}m$ can follow the air flow but a droplet over 50${\mu}m$ penetrates the recirculation zone due to large momentum and a droplet of 30-50${\mu}m$ can follow the recirculating flow or pene-trates the recirculation zone.

  • PDF

다공 세라믹 오일 연소기의 온도분포 및 CO, NOx 배출 특성에 관한 실험적 연구 (Experimental Study on the Temperature Distribution and CO, NOx Emission of Porous Ceramic Oil Burner)

  • 조제동;강재호;임인권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.398-403
    • /
    • 2000
  • Experimental study on the porous ceramic burner for oil burning has been performed. Temperature profile of the combustor and CO and NOx emission have been obtained for with and without porous ceramic plate. It is found that very uniform and high temperature region with porous ceramic plate can be realized due to high radiation emission from the plate and also obtained lower CO and soot particulate emission, when compared to the conventional burner. When this burning method is applied to conventional boiler of small heating capacity, it is found that near 6 and 7 percent increase in thermal efficiency could be obtained without a proper calibration for optimization.

  • PDF

저열량 바이오매스 합성가스의 혼소특성 (The Duel Fuel Combustion of Low Calorific Biomass Syngas with Fuel Oil)

  • 윤상준;김용구;전창준;이재구
    • Korean Chemical Engineering Research
    • /
    • 제50권5호
    • /
    • pp.860-865
    • /
    • 2012
  • 바이오매스 합성가스는 저열량 가스이지만 유류를 대체하기 위한 목적으로 공업로, 보일러 등에서 혼소방법으로 이용되고 있다. 혼소버너의 기본구조는 오일버너를 중심부로 하고 저열량 가스 연료를 그 주위로 공급하는 형태로 설계되었다. 본 연구에서는 가스의 균일분산 방법과 가스노즐 각도를 변화시키는 방법을 적용하여 세 종류의 버너를 설계하였다. 연소공기량 증가에 따라 CO 발생량이 감소하였으며, 혼소조건에서 화염으로부터 잔염 발생 원인은 오일버너로부터 미립화 불량인 것으로 나타났다. 혼소조건에서는 가스와 오일연료에 대한 과잉공기 요구량이 서로 다르기 때문에 적절하게 연소공기량을 맞추기가 어려웠지만, 과잉산소 4.7~8.2% 범위에서 안정적인 연소조건 유지가 가능하였다. 본 연구를 통하여 합성가스와 유류의 혼소 이용은 합성가스 성분이 오일보다 연소속도가 빠르게 이루어져 오일버너 미립화를 촉진시켜주고, 오일 단독연소조건보다 CO 배출 농도를 낮게 유지할 수 있음을 알 수 있었다.