• 제목/요약/키워드: Oil & Gas Offshore

검색결과 136건 처리시간 0.021초

Optimisation of pipeline route in the presence of obstacles based on a least cost path algorithm and laplacian smoothing

  • Kang, Ju Young;Lee, Byung Suk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권5호
    • /
    • pp.492-498
    • /
    • 2017
  • Subsea pipeline route design is a crucial task for the offshore oil and gas industry, and the route selected can significantly affect the success or failure of an offshore project. Thus, it is essential to design pipeline routes to be eco-friendly, economical and safe. Obstacle avoidance is one of the main problems that affect pipeline route selection. In this study, we propose a technique for designing an automatic obstacle avoidance. The Laplacian smoothing algorithm was used to make automatically generated pipeline routes fairer. The algorithms were fast and the method was shown to be effective and easy to use in a simple set of case studies.

Reliability sensitivity analysis of dropped object on submarine pipelines

  • Edmollaii, Sina Taghizadeh;Edalat, Pedram;Dyanati, Mojtaba
    • Ocean Systems Engineering
    • /
    • 제9권2호
    • /
    • pp.135-155
    • /
    • 2019
  • One of the safest and the most economical methods to transfer oil and gas is pipeline system. Prediction and prevention of pipeline failures during its assessed lifecycle has considerable importance. The dropped object is one of the accidental scenarios in the failure of the submarine pipelines. In this paper, using Monte Carlo Sampling, the probability of damage to a submarine pipeline due to a box-shaped dropped object has been calculated in terms of dropped object impact frequency and energy transfer according to the DNV-RP-F107. Finally, Reliability sensitivity analysis considering random variables is carried out to determine the effect intensity of each parameter on damage probability. It is concluded that impact area and drag coefficient have the highest sensitivity and mass and add mass coefficient have the lowest sensitivity on probability of failure.

MGO Chiller 시스템의 제어 방식에 따른 온도 동특성 연구 (Study of Temperature Dynamic Characteristics of Various Control Methods for MGO Chiller System)

  • 조희주;김성훈;최정호
    • 한국해양공학회지
    • /
    • 제33권2호
    • /
    • pp.139-145
    • /
    • 2019
  • It is important that an MGO Chiller System, which is one of the sulfur oxide emission control technologies, is designed to meet the fuel temperature requirements, even with sudden engine load changes. Three different control algorithms (PI, Cascade, and MPC) were applied to an indirect MGO chiller system to compare and analyze the outlet temperature dynamic characteristics of the system through a case study. The results showed that the MPC control method had the best temperature following characteristics in the case study, and the temperature deviation range was reduced by approximately 5% compared to the PI control method.

해양플랜트 상부구조설계 지원 소프트웨어 개발에 대한 연구 (A Study on the Development of Software Supporting the Superstructural Design of Offshore Plant)

  • 김현철;국성근
    • 한국산학기술학회논문지
    • /
    • 제21권11호
    • /
    • pp.19-27
    • /
    • 2020
  • 해양플랜트 탑사이드에는 원유, 가스 등의 에너지 자원을 처리하기 위한 다양한 종류의 해양 설비들과 이들 설비들을 연결하는 기자재 및 의장재들이 제한된 공간 내에 설치되어 있다. 그리고 해양플랜트 상부구조는 해양 설비 및 관련 장비들을 고정하고 지지하기 위한 수많은 받침선반 구조물과 보강재들로 구성된 구조물이다. 본 논문은 이들 상부구조설계를 효율적으로 지원하기 위한 설계 지원 소프트웨어 개발 내용을 기술하였다. 개발된 설계 지원 소프트웨어는 AVEVA Marine의 PML(Programmable macro language)을 기반으로 하며, 상부구조설계를 위한 파라메트릭 방법을 지원한다. 브라켓, 수직 보강재 등 해양플랜트 상부 구조의 보강재를 위한 파라메트릭 설계는 설계 오류를 줄이고 효율적인 작업을 가능하게 한다. 그리고 AutoLisp을 사용하여 기본 설계와 상세설계에서 작성된 받침선반 구조에 대한 2D도면으로부터 일괄 3D 모델링하는 방법을 개발하였다. 또한, 개발된 설계지원 소프트웨어를 해양플랜트 상부구조설계 3D 모델링에 적용할 할 경우 AVEVA PDMS의 기본 기능들만 사용한 경우 대비 약 90%이상 설계시수 단축을 기대할 수 있음을 상부구조 모듈설계 적용 예를 통해 확인하였다.

Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics

  • Abed, Younes;Bouzid, Djillali Amar;Bhattacharya, Subhamoy;Aissa, Mohammed H.
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1143-1179
    • /
    • 2016
  • Offshore wind turbines are considered as a fundamental part to develop substantial, alternative energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic deformation patterns under lateral loading differ from those of small diameter monopiles usually employed for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction of monopile head displacement and rotation constitutes a design criterion of paramount importance. In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an extensive parametric study, and in order to address the problem of head stiffness of short monopiles, approximate analytical formulae are obtained for lateral stiffness $K_L$, rotational stiffness $K_R$ and cross coupling stiffness $K_{LR}$ for both rough and smooth interfaces. Theses expressions which depend only on the values of the monopile slenderness $L/D_p$ rather than the relative soil/monopile rigidity $E_p/E_s$ usually found in the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the computed and the measured natural frequencies.

Natural frequency of bottom-fixed offshore wind turbines considering pile-soil-interaction with material uncertainties and scouring depth

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim;Andersen, Lars Vabbersgaard
    • Wind and Structures
    • /
    • 제21권6호
    • /
    • pp.625-639
    • /
    • 2015
  • Monopiles have been most widely used for supporting offshore wind turbines (OWTs) in shallow water areas. However, multi-member lattice-type structures such as jackets and tripods are also considered good alternatives to monopile foundations for relatively deep water areas with depth ranging from 25-50 m owing to their technical and economic feasibility. Moreover, jacket structures have been popular in the oil and gas industry for a long time. However, several unsolved technical issues still persist in the utilization of multi-member lattice-type supporting structures for OWTs; these problems include pile-soil-interaction (PSI) effects, realization of dynamically stable designs to avoid resonances, and quick and safe installation in remote areas. In this study, the effects of PSI on the dynamic properties of bottom-fixed OWTs, including monopile-, tripod- and jacket-supported OWTs, were investigated intensively. The tower and substructure were modeled using conventional beam elements with added mass, and pile foundations were modeled with beam and nonlinear spring elements. The effects of PSI on the dynamic properties of the structure were evaluated using Monte Carlo simulation considering the load amplitude, scouring depth, and the uncertainties in soil properties.

Reinforcement of mechanical properties in unsaturated polyester resin with nanosheet

  • Vahid Zarei
    • Advances in nano research
    • /
    • 제16권1호
    • /
    • pp.81-90
    • /
    • 2024
  • In the oil and gas industry, composite materials should exhibit high flexibility and strength for offshore structures. Therefore, weak points in the composites should be improved, such as brittleness, moisture penetration, and diffusion of detrimental ions into nanometric pores. This study aimed to increase the strength, flexibility, and plugging of nanopores using single-layer graphene oxide (SGO) nanosheets. Therefore, SGO is added to unsaturated polyester resin at concentrations of 0.015 and 0.15 % with Normal Methyl Pyrrolidone (NMP) as a solvent for the formation of Nanographene Oxide Reinforced Polymer (NGORP). The mechanical properties of the prepared samples were tested using tensile testing (ASTM-D 638). It has been shown that incorporating SGO, approximately 0.015%, into the base resin resulted in enhanced properties such as rupture resistance forces increased by 745.61 N, applied stress tolerances increased by 4.1 MPa, longitude increased to 1.58 mm, elongation increased by about 2.38%, and rupture energy increased by about 204.51 J. Despite the decrease in tensile force strength properties in the manufactured nanocomposite with 0.15% SGO, it has exclusive flexibility properties such as a high required energy level for rupture of 5,576 times and a formability of 40% more than the base sample. It would be best to use NGORP manufactured from 0.015% nanosheets with exclusive properties rather than base samples for constructing parts and equipment, such as rebars, composite sheets, and transmission pipes, on offshore platforms.

Dynamic response characteristics of an innovative turretless low motion FPSO hull in central GoM ultra-deep waters

  • Zou, Jun
    • Ocean Systems Engineering
    • /
    • 제12권2호
    • /
    • pp.173-223
    • /
    • 2022
  • In oil and gas industry, FPSO concept is the most popular hull form and ship shaped hull form dominants the FPSO market. Only a non-ship-shaped hull in operations with minor market shares is the cylindrical FPSO hull with medium to small storage capability. To add contracting options and competitions to reduce field development costs, an innovative turretless low motion hull, eco-FPSO, with 1MM bbls oil storage capacity and suitable for installing topsides modulars and equipping with regular SCRs, was first introduced in Zou (2020a). Dynamic characteristic responses of the eco-FPSO compared to the traditional SS-FPSO hull and DD-Semi platform are presented and discussed in this paper, suitability and feasibility of the proposed hull have been demonstrated and validated through extensive analyses in 10-yrp, 100-yrp and 1,000-yrp hurricanes in ultra-deepwater central GoM.

심해저 원유 생산용 매니폴드 프레임 구조 기본 설계 (Basic Design of Deep Subsea Manifold Frame Structure for Oil Production)

  • 박세용;정준모
    • 한국해양공학회지
    • /
    • 제29권3호
    • /
    • pp.207-216
    • /
    • 2015
  • Amanifold is one of the essential subsea oil and gas production components to simplify the subsea production layout. It collects the production fluid from a couple of wellheads, transfers it to onshore or offshore storage platforms, and even accommodates water and gas injection flowlines. This paper presents the basic design procedure for a manifold frame structure with novel structural verification using in-house unity check codes. Loads and load cases for the design of an SIL 3 class-manifold are established from a survey of relevant industrial codes. The basic design of the manifold frame is developed based on simple load considerations such as the self weights of the manifold frame and pipeline system. In-house software with Eurocode 3 embedded, called INHA-SOLVER, makes it possible to carry out code checks on the yield and buckling unities. This paper finally proves that the new design of the manifold frame structure is effective to resist a permanent and environment load, and the in-house code is also adaptively combined with the commercial finite element code Nastran.

A finite element analysis for unbonded flexible risers under bending loads

  • Xiqia, Chen;Shixiao, Fu;Yun, Gao;Xiaying, Du
    • Ocean Systems Engineering
    • /
    • 제5권2호
    • /
    • pp.77-89
    • /
    • 2015
  • As the exploitation of oil and gas resources advances into deeper waters and harsher environments, the design and analysis of the flexible risers has become the research focus in the offshore engineering filed. Due to the complexity of the components and the sliding between the adjacent layers, the bending response of the flexible risers is highly non-linear. This paper presents the finite element analysis of the flexible risers under bending loads. The detailed finite element model of the flexible riser is established in ABAQUS software. This finite element model incorporates all the fine details of the riser to accurately predict its nonlinear structural behavior. Based on the finite element model, the bending moment-curvature relationships of a flexible riser under various axisymmetric loads have been investigated. The results have been compared with the analytical ones obtained from the literature and good agreements have been found. Moreover, the stress of the tendon armors has been studied. The non-linear relationship between the armor tendons' stress and the bending loads has been obtained.