• 제목/요약/키워드: Oil & Gas Offshore

검색결과 136건 처리시간 0.026초

Integrated engineering environment for the process FEED of offshore oil and gas production plants

  • Hwang, Ji-Hyun;Roh, Myung-Il;Lee, Kyu-Yeul
    • Ocean Systems Engineering
    • /
    • 제2권1호
    • /
    • pp.49-68
    • /
    • 2012
  • In this paper, an offshore process front end engineering design (FEED) method is systematically introduced and reviewed to enable efficient offshore oil and gas production plant engineering. An integrated process engineering environment is also presented for the topside systems of a liquefied natural gas floating production, storage, and offloading (LNG FPSO) unit, based on the concepts and procedures for the process FEED of general offshore production plants. Various activities of the general process FEED scheme are first summarized, and then the offshore process FEED method, which is applicable to all types of offshore oil and gas production plants, is presented. The integrated process engineering environment is presented according to the aforementioned FEED method. Finally, the offshore process FEED method is applied to the topside systems of an LNG FPSO in order to verify the validity and applicability of the FEED method.

사할린 연안 유전개발 프로젝트 현황과 전망 (A Summary of Oil and Gas Development Projects on Sakhalin Offshore and Its Prospects)

  • 임채환
    • 연구논문집
    • /
    • 통권28호
    • /
    • pp.111-121
    • /
    • 1998
  • Offshore of Sakhalin Island is one of potential oil and gas development fields in Russia. American and Japanese companies are actively participating in the developments. They plan to export the produced oil and gas to East Asia including Korea, Japan and China. So far, offshore oil and gas field developments are mainly concentrated in the Russian Arctic area such as Barents Sea, Kara Sea and Tinman-Pechora Sea. In this article, the projects under development on the Sakhalin Shelf are reviewed and the environmental conditions in this area are summarized. At the end, the future prospects of the Sakhalin developments are reviewed.

  • PDF

Offshore Oil & Gas산업에서의 장비 국제표준화 추진에 관한 접근방법 및 추진 사례 (Approach and case study on promotion of international standardization of equipment in offshore oil & gas industry)

  • 한성종;서영균;정정열;박범
    • 플랜트 저널
    • /
    • 제16권1호
    • /
    • pp.28-33
    • /
    • 2020
  • 본 연구는 Offshore Oil & Gas 산업에서의 장비 및 벌크자재 국제표준화 추진에 대한 접근방법에 대한 연구로 국제표준화를 위한 요구사항을 분석하고 표준화 장비의 우선순위 선정 및 1단계 표준화 결과를 설명한다. 현재 국제적으로 진행되고 있는 표준화활동은 크게 3개의 활동들로 구분할 수 있으며 첫째로 국내 대형 조선3사가 주도하여 진행하는 벌크자재 국제표준화활동, 둘째로 IOGP의 주도하에 진행되는 JIP33 장비표준화 활동 및 마지막으로 선급을 중심으로 이루어지는 UEJIP 장비표준화활동으로 구분될 수 있다. 본 연구는 Offshore Oil & Gas산업에서 적용되는 각종 국제표준을 분류하고 이를 기반으로 하여 진행되고 있는 선급 주도의 장비 표준화 활동 및 실제 프로젝트의 적용사례를 소개한다.

해저 오일 저류층 내 오일 및 주입가스 조성에 따른 가스리프트 공법의 최적 설계 (An Optimal Design of Gas Lift in Offshore Oil Reservoirs Considering Oil and Injected Gas Composition)

  • 김영민;신창훈;이정환
    • 한국가스학회지
    • /
    • 제22권4호
    • /
    • pp.39-48
    • /
    • 2018
  • 가스리프트(gas lift) 설계 영향인자인 오일 조성과 주입가스 조성에 따라 해저 오일 저류층(offshore oil reservoir) 내 가스리프트 최적 설계를 수행하였다. 이를 위해 오일의 API 비중에 따라 구축된 저류층 모델을 이용하여 생산 시뮬레이션을 수행하였다. 저류층의 지속적인 생산성 감소 시, 가스리프트 적용에 의한 오일 생산증진효과가 크게 나타남을 확인하였다. 생산정 모델을 이용하여 가스리프트 반응곡선을 분석한 결과, 오일의 API 비중이 감소하고 주입가스의 비중이 증가할수록 생산량 증진에 필요한 주입 가스량이 높게 산출되었다. 다중밸브를 이용하여 가스리프트 최적 설계를 수행하였으며, 단일밸브 설계와 비교했을 때 가스 주입심도 감소로 인해 상대적으로 낮은 주입압력으로도 가스리프트 공법 운영이 가능하였다. 저류층 모델과 생산정 모델을 연계하여 가스리프트 적용에 따른 오일 생산증진을 분석한 결과, API 비중이 낮은 중질유 저류층에 천연가스를 주입했을 때 가스리프트에 의한 생산효율이 극대화될 수 있다.

해상에서의 LNG 생산을 위한 공정 고찰 (Study of Process for Offshore LNG Production)

  • 김승혁;하문근;김병우;;구근회
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.119-123
    • /
    • 2002
  • Liquefied Natural Gas(LNG) continues to attract modern gas industries as well as domestic markets as their main energy source in the recent years. This is mainly because LNG is inherently cleaner and more energy efficiency than other fuels. Offshore LNG production plant is of interest to many oil producing companies all over the world. This article discuss about the production process encountered while developing such a production facility. Typical offshore oil and gas processing required for oil stabilization and other optional units that can be added to the facilities. The production process can broadly be divided into five major units namely, (i) Oil Stabilization unit, (ii) Gas Treatment unit, (iii) Methane Recovery unit, (iv) Distillation unit and (v) LNG Liquefaction unit. The process simulation was carried out for each unit with a given wellhead composition. The topside facilities of offshore LNG production plant will be very similar to the process adopted in offshore processing platform along with the typical onshore LNG production plant. However, the process design problems associated with FPSO motion to be taken care of while developing floating LNG production plant.

  • PDF

해저 송유배관 유지관리를 위한 기준 보완 제시 (Supplementation of Regulation on the Offshore Oil Pipeline for Maintenance)

  • 강찬성;문승재
    • 플랜트 저널
    • /
    • 제8권2호
    • /
    • pp.70-81
    • /
    • 2012
  • The study aims to supplement facility management plan and safety regulations & standard of oil pipeline by searching and reviewing related regulation & standard inside and outside of the country. Korean regulation & standard is reviewed based on harbor and fishery design standard of the ministry of maritime affairs and fisheries, general technology standard of oil pipeline safety regulation, gas excavation construction and safety maintenance indicator of Korea gas corporation. Global regulation & standard is reviewed based on U.S standard inspection for offshore pipeline and Europe/Mexico standard inspection for offshore pipeline. The contents of offshore pipeline installation is inserted into pipeline sector for objected facilities of safety inspection regulation & standard and, the standard of safety inspection for offshore pipeline is newly presented into pipeline maintenance part of the planning facilities management with its inspection period and method.

  • PDF

시장 수요를 고려한 Offshore Production의 최적화 설계 (Optimal design of offshore production considering market demand)

  • 김창수;김시화
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2014년도 추계학술대회
    • /
    • pp.53-55
    • /
    • 2014
  • Offshore 에서의 oil & gas 생산은 해상이라는 환경으로 인한 고유의 특성 때문에 항상 다수의 변수들에 영향을 받으며, 막대한 비용이 소요되기 때문에 비용을 최소화하며, 비용 대비 수익을 최대화시키기 위한 optimal design이 필수이다. 본 논문은 가상의 offshore plant와 이에서 생산된 oil의 수요지들을 설정하여 시장수요에 따른 offshore 생산의 최적화 문제를 연구대상으로 하며, 다수의 offshore oil fields를 보유한 major oil company가 당면할 수 있는 offshore production에 관한 문제를 일반화하여 정의하고, 이윤을 극대화시킬 수 있는 최적화 모형을 혼합정수계획모형(mixed integer programming)으로 정식화 하였다. 최적화 모형의 해는 Microsoft office excel solver를 통해 구하였으며 그 계산실험의 결과를 요약하여 보고한다.

  • PDF

Parameters study on lateral buckling of submarine PIP pipelines

  • Zhang, Xinhu;Duan, Menglan;Wang, Yingying;Li, Tongtong
    • Ocean Systems Engineering
    • /
    • 제6권1호
    • /
    • pp.99-115
    • /
    • 2016
  • In meeting the technical needs for deepwater conditions and overcoming the shortfalls of single-layer pipes for deepwater applications, pipe-in-pipe (PIP) systems have been developed. While, for PIP pipelines directly laid on the seabed or with partial embedment, one of the primary service risks is lateral buckling. The critical axial force is a key factor governing the global lateral buckling response that has been paid much more attention. It is influenced by global imperfections, submerged weight, stiffness, pipe-soil interaction characteristics, et al. In this study, Finite Element Models for imperfect PIP systems are established on the basis of 3D beam element and tube-to-tube element in Abaqus. A parameter study was conducted to investigate the effects of these parameters on the critical axial force and post-buckling forms. These parameters include structural parameters such as imperfections, clearance, and bulkhead spacing, pipe/soil interaction parameter, for instance, axial and lateral friction properties between pipeline and seabed, and load parameter submerged weight. Python as a programming language is been used to realize parametric modeling in Abaqus. Some conclusions are obtained which can provide a guide for the design of PIP pipelines.

오일 및 가스 플랫폼의 해체에 관한 연구 (A Study on the Decommissioning of Oil and Gas Platform)

  • 전창수
    • 한국산업융합학회 논문집
    • /
    • 제23권6_2호
    • /
    • pp.1081-1091
    • /
    • 2020
  • The most recent issue of offshore plants that produce oil and gas are the decommissioning engineering of aged or discontinued platforms. There are many platforms that are being dismantled in the United States, Europe, and areas in Southeast Asia. In particular, more than 400 old platforms in Southeast Asia (Indonesia, Malaysia) are preparing to dismantle. They are spread out across Southeast Asia with a water level of 50 meters and small-scale of less than 10,000 tons. However, this offshore plant decommissioning market is a very suitable market for small and medium-sized shipyards in Korea to enter with their established equipment and engineers. Platform decommissioning is conducted according to decommissioning procedures. However, there are some difficulties in market advances as no developed case studies or process models are established on how platform structures and components are to be dismantled and how the dismantled material is to be reused and recycled. Therefore, this study presented domestic and foreign regulations on the reuse and recycling of oil and gas producing offshore plant platforms, case analyses on developed decommissioning engineering, platform reuse and recycling guidelines, and platform and pipeline decommissioning processes and methods.

반 잠수식 시추선 및 주요장비에 대한 이해 (Semi-submersible Drilling Rig and Drilling Equipment)

  • 안병기;오현정
    • 한국해양공학회지
    • /
    • 제26권6호
    • /
    • pp.86-92
    • /
    • 2012
  • An exploration well is drilled where oil or gas potential is shown by a seismic survey and interpretation. With the advance of drilling technology, most of the easily accessible oil had been developed by the end of the 20th century. To satisfy the ever increasing demand for oil, and bolstered by high oil prices, the major oil companies started to drill in deep water, which requires a deep offshore drilling unit. Offshore drilling units are generally classified by their maximum operating water depth. Many semi-submersible rigs have been purpose-designed for the drilling industry as the allowable drilling water depth has become deeper by the developed technics since the first semi-submersible was launched in 1963. Semi-submersible rigs are commonly used for shallow to deep water up to 3,000 m. Drilling equipment such as a top drive, blowout preventer, drawworks and power system, mud circulation system, and subsea wellhead system are explained to help with an understanding of offshore drilling procedures in the oil and gas fields. The objective of this paper is to introduce the main components of a semi-submersible rig and, by doing so, to raise the awareness of offshore drilling, which accounts for over 30% of the total oil production and will continue to increase.