• Title/Summary/Keyword: Ogcheon Belt

Search Result 90, Processing Time 0.023 seconds

Metamorphic Evolution of the Ogcheon Metamorphic Belt: Review of Recent Studies and Remaining Problems (중부 옥천변성대의 변성진화: 최근의 연구결과 논평 및 문제점)

  • 조문섭;김현철
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.121-137
    • /
    • 2002
  • Metamorphic evolution of the Ogcheon metamorphic belt has been studied by many investigators for the past few decades. P-T conditions of the Ogcheon metamorphic belt were estimated as 4.2-9.4 kbar and $490-630^{\circ}C$, corresponding to the medium-pressure type. In addition, the clockwise P-T-t path suggests a crustal-thickening event in association with the formation of thrust nappes. However, some details on deformation and orogeny of the Ogcheon metamorphic belt have been ambiguous yet. Although the metamorphic age has been also equivocal, recent isotopic studies strongly suggest that the peak metamorphism in the Ogcheon metamorphic belt has occurred at ca. 300-280 Ma between Late Carboniferous and Early Permian. It is thus inferred that the Ogcheon metamorphic belt and the Taebaegsan basin have evolved as separate terranes and that both were sutured at ca. 250-220 Ma. These results are partly in contrast with those of previous workers and require a revised framework for tectonic evolution of the Ogcheon belt. In addition, it is likely that the Ogcheon belt is correlative with the Hida marginal belt and the Hida metamorphic belt.

SHRIMP V-Pb Zircon Age of a Felsic Meta-tuff in the Ogcheon Metamorphic Belt, Korea: Neoproterozoic (ca. 750 Ma) Volcanism (옥천변성대 규장질 변성응회암의 SHRIMP U-Pb 저어콘 연대: 신원생대(약 7.5억년전) 화산활동)

  • 조문섭;김태훈;김현철
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.119-125
    • /
    • 2004
  • Using a SHRIMP ion microprobe, we have dated zircon grains of a felsic meta-tuff from the so-cal1ed Munjuri Formation, Ogcheon metamorphic belt. The weighted mean $^{206}$ Pb/$^{238}$ U zircon ages obtained from 13 spot analyses of 10 grains provide an essentially concordant age of 747${\pm}$7Ma. This result corroborates the conventional U-Pb zircon age (756${\pm}$1Ma; Lee et al., 1998) for the Neoproterozoic bimodal volcanism in the Ogcheon belt. Thus, proto-basins associated with intracontinental, high-volcanicity rift in the Ogcheon belt are most likely to have formed at ca. 750 Ma.

Hydrochemistry of Groundwater in the Uraniferous Sedimentary Rocks of the Ogcheon Belt, Republic of Korea (옥천대 우라늄 광화대 부근 퇴적암 지하수의 수리화학적 특성)

  • Hwang, Jeong
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.205-213
    • /
    • 2010
  • A hydrochemical comparative study of groundwater in uraniferous sedimentary rock of the Ogcheon belt was carried out to investigate the genetic relationship between uraniferous groundwater of Daejeon area and uraniferous sedimentary rocks of the Ogcheon zone. The groundwater shows weak alkaline pH values rangingfrom 6.4 to 8.1 and low Eh values ranging from -50 to 225 mV. The groundwaters to Ca-$HCO_3$ type that shows high concentration of $Ca^{2+}$ and $HCO_3^_$ due to the dissolution of carbonate mineral in limestone. The concentration of uranium in the groundwater was measured very low below $3.2{\mu}g/L$, while it was detected as much as $1165{\mu}g/L$ in the mine waste water. The low Eh value of groundwater is one of the main causes of low uranium concentration of groundwater in uraniferous sedimentary rocks in the Ogcheon belt. It is suggested that the uranium of groundwater in granitic region of Daejeon area was not mainly provided from uraniferous sedimentary rocks in the Ogcheon belt.

Geological Structures of Jucheon Area, Contact Area between Ogcheon Belt and Gyeonggi Massif (옥천대와 경기육괴의 경계부, 주천 지역의 지질구조)

  • Kihm, You-Hong;Kee, Won-Seo;Jin, Gwang-Min
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.637-648
    • /
    • 2010
  • The Songbong Formation (so-called Bangrim Group), correated to the lower part of Choseon Supergroup, unconformably overlies the Precambrian Gyeonggi massif at northeastem tip of the Ogcheon belt The contact relationship between the Choseon Supergroup and the Yeongnam massif is also known as an unconformity at northeastem part of the Ogcheon belt. lt implies that the Gyeonggi and Yeongnam massifs were probably connected each other before the Early Paleozoic. Three deformational phases are recognized in the study area, The first phase is the north-northeastward ductile thrusting, which places Precambrian granite of the Gyeonggi massif over the Paleozoic rocks of the Ogcheon belt. The second phase is characterized by the southeastward thrusting and deformation partitioning along the Nuruhaji compartment fault. The third phase is the reactivation of the Nuruhaji Fault into dextral strike-slip fault with over a few kilometers displacement.

The 3-D Geomagnetic Induction Modeling and the Application of Difference Arrow Considering with Conductivity Structures on the Korean Peninsula (한반도 내의 전도성 구조를 고려한 3파원 지자기 모델링 및 차이 지시자의 적용)

  • Oh, Seok-Hoon;Lee, Duk-Kee;Kwon, Byung-Doo;Youn, Yong-Hoon;Yang, Jun-Mo
    • Journal of the Korean earth science society
    • /
    • v.24 no.5
    • /
    • pp.440-448
    • /
    • 2003
  • We have performed 3-D geomagnetic induction Modeling considering with anomalous conductive structures to interpret the conductive anomaly proposed by previous studies on the Korean Peninsula. The results of modeling coincide well with the observed induction arrow. we confirm the fact that Imjin River Belt and Ogcheon Belt presumed in the model are reasonable. In the western-middle area of the peninsula (YIN, ICHN) the induction arrows seem to reflect the existence for the Imjin River Belt and the induction arrows in western-south area (HNS, CHY, DZN, MWN) is likely to reflect the effect of the Ogcheon Belt. The difference arrows, calculated by subtracting the sea effect from observed induction arrow in the western area of the peninsula at the period of 60-minutes, show little difference with the observed induction arrows. Especially, the difference arrows in YIN, ICHN also show a similar pattern to those at the periods longer than 10-minutes. These results strongly suggest that the Imjin River Belt and the Ogcheon Belt extend down to the deep part of the crust in spite of the limitation of our model.

K-Ar biotite ages of pelitic schists in the Jeungpyeong-Deokpyeong area, central Ogcheon metamorphic belt, Korea (증평-덕평 지역 중부 옥천변성대에 분포하는 이질 편암의 K-Ar 흑운모 연대)

  • 조문섭;김인준;김현철;민경원;안중호;장미경개
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.178-184
    • /
    • 1995
  • The K-Ar ages of biotites, obtained from thirteen pelitic schists in the Jeungpyeong-Deokpyeong area, central Ogcheon metamorphic belt, range from 89 Ma to 213 Ma except for one specimen. These K-Ar ages systematically decrease as the distance between the analyzed specimen and the Jurassic or Creataceous granite decreases. The K-Ar ages of b~otites adjacent to the Jurassic and Cretaceous granites are 166 Ma and 89 Ma, respectively. Thus, the biotite ages are interpreted to result from the partial or complete resetting by thermal activities in association with the intrusion of Mesozoic granites, following the regional-thermal metamorphism at Late Triassic to Early Jurassic times.

  • PDF

The study on the Igneous Activity in the Southeastern Zone of the Ogcheon Geosynclinal Belt, Korea(I) with the Igneous Activity in Namweon-Geochang-Sangju Area (옥천지향사대(沃川地向斜帶) 동남대(東南帶)에서의 화성활동(火成活動)(I): 남원(南原)-거창(居昌)-상주(尙州) 지역(地域)을 중심(中心)으로)

  • Kim, Yong Jun;Park, Yong Seog;Choo, Seung Hwan;Oh, Mihn Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.4
    • /
    • pp.355-370
    • /
    • 1989
  • Igneous rocks of study area consist of Pre-Cambrian orthogneiss, Devonian granite, Triassic foliated granites and Jurassic granites distributed along the southeast margin of Ogcheon Geosynclinal belt(SE-zone), and irregular shaped granitic stocks in the central part of the belt(C-zone). Anorthosite and gaabbro are also present in southern part of the SE-zone in the belt and intruded into gneiss complex of Ryongnam massif. Distribuition of foliated granites shows three linear arrangements which are composed of hornblende-biotite foliated granodiorite, porphyritic foliated granodiorite, biotite foliated granodiorite, leuco foliated granite and two mica foliated granite. Foliated granites generated by dextral strike slip movement at deep level. Jurassic granites composed of several rock facies are considered to be formed by differentiation of magma during Daebo Orogeny. A general trend of the chemical composition of these igneous rocks in study area suggests that most of them corresponding to calc-alkaline rock series was affected under orogeny and I-type granite except for two mica foliated granite. In chondrite normalised REE pattern of these igneous rocks, LREE shows more variable range and strong (-)Eu anomaly than HREE. Geochronological episodes of igneous activity from early Proterozoic to Cretaceous in SE-zone of Ogcheon Geosynclinal belt are two more Pre-Cambrian Orogeny, Devonian Orogeny(Variscan), Songrim Disturbance, Daebo Orogeny and Bulkuksa Disturbance.

  • PDF

Geochemical Correlations Between Uranium and Other Components in U-bearing Formations of Ogcheon Belt (옥천대(沃川帶) 함(含)우라늄지층중(地層中)의 우라늄과 타성분(他成分)과의 상관관계(相關關係))

  • Lee, Min Sung;Chon, Hyo Taek
    • Economic and Environmental Geology
    • /
    • v.13 no.4
    • /
    • pp.241-246
    • /
    • 1980
  • Some components in uranium-bearing formations which consist mainly of black shale, slate. and low grade coal-bearing formation of Ogcheon Belt were processed statistically in order to find out the geochemical correlations with uranium. Geochemical enrichment of uranium, vanadium and molybdenum in low grade coal-bearing formations and surrounding rocks is remarkable in the studied area. Geochemical correlation coefficient of uranium and molybdenum in the rocks displays about 0.6, and that of uranium and fixed carbon about 0.4. Uranium and vanadium in uranium-bearing low grade coals denote very high correlation with fixed carbon, which is considered to be responsible for enrichment of metallic elements, especially molybdenum. Close geochemical correlation of uranium-molybdenum couple in the rocks can be applied as a competent exploration guide to low grade uranium deposits of this area.

  • PDF