• Title/Summary/Keyword: Offsite power

Search Result 36, Processing Time 0.027 seconds

A Study on Battery Charger Reliability Improvement of Nuclear Power Plants DC Distribution System (원자력발전소 직류 전력계통의 충전기 신뢰도 향상방안 연구)

  • Lim, Hyuk-Soon;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.24-28
    • /
    • 2010
  • The nuclear power Plant onsite AC electrical power sources are required to supply power to the engineering safety facility buses if the offsite power source is lost. Typically, Diesel Generators are used as the onsite power source. The 125 VAC buses are part of the onsite Class 1E AC and DC electrical power distribution system. The DC power distribution system ensure the availability of DC electrical power for system required to shutdown the reactor and maintain it in a safety condition after an anticipated operational occurrence or a postulated Design Base Accident. Recently, onsite DC power supply system trip occurs the loss of system function. To obtain the performance such as reliability and availability, we analyzed the cause of battery charger trip and described the improvement of DC power supply system reliability. Finally, we provide reliability performance criteria of charger in order to ensure the probabilistic goals for the safety of the nuclear power plants.

Development of MURCC code for the efficient multi-unit level 3 probabilistic safety assessment

  • Jung, Woo Sik;Lee, Hye Rin;Kim, Jae-Ryang;Lee, Gee Man
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2221-2229
    • /
    • 2020
  • After the Fukushima Daiichi nuclear power plant (NPP) accident, level 3 probabilistic safety assessment (PSA) has emerged as an important task in order to assess the risk level of the multi-unit NPPs in a single nuclear site. Accurate calculation of the radionuclide concentrations and exposure doses to the public is required if a nuclear site has multi-unit NPPs and large number of people live near NPPs. So, there has been a great need to develop a new method or procedure for the fast and accurate offsite consequence calculation for the multi-unit NPP accident analysis. Since the multi-unit level 3 PSA is being currently performed assuming that all the NPPs are located at the same position such as a center of mass (COM) or base NPP position, radionuclide concentrations or exposure doses near NPPs can be drastically distorted depending on the locations, multi-unit NPP alignment, and the wind direction. In order to overcome this disadvantage of the COM method, the idea of a new multiple location (ML) method was proposed and implemented into a new tool MURCC (multi-unit radiological consequence calculator). Furthermore, the MURCC code was further improved for the multi-unit level 3 PSA that has the arbitrary number of multi-unit NPPs. The objectives of this study are to (1) qualitatively and quantitatively compare COM and ML methods, and (2) demonstrate the strength and efficiency of the ML method. The strength of the ML method was demonstrated by the applications to the multi-unit long-term station blackout (LTSBO) accidents at the four-unit Vogtle NPPs. Thus, it is strongly recommended that this ML method be employed for the offsite consequence analysis of the multi-unit NPP accidents.

Preventing cascading failure of electric power protection systems in nuclear power plant

  • Moustafa, Moustafa Abdelrahman Mohamed Mohamed;Chang, Choong-koo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.121-130
    • /
    • 2021
  • Cascading failure is the main cause of large blackouts in electrical power systems; this paper analyzes a cascading failure in Hanbit nuclear power plant unit two (2) caused by a circuit breaker (CB) operation failure. This malfunction has been expanded to the loss of offsite power (LOOP). In this study, current practices are reviewed and then the methodologies of how to prevent cascading failures in protection power systems are introduced. An overview on the implementation of IEC61850 GOOSE messaging-based zone selective interlocking (ZSI) scheme as key solution is proposed. In consideration of ZSI blocking time, all influencing factors such as circuit breaker opening time, relay I/O response time and messages travelling time in the communication network should be taken into account. The purpose of this paper is to elaborate on the effect of cascading failure in NPP electrical power protection system and propose preventive actions for this failures. Finally, the expected advantages and challenges are elaborated.

An Analysis of a Post-Trip Return-to-Power Steam Line break Events

  • Baek, Seung-Su;Lee, Cheol-Sin;Song, Jin-Ho;Lee, Sang-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.544-549
    • /
    • 1995
  • An analysis for Steam Line Break (SLB) events which result in a return-to-power conditions after reactor trip was performed for a postulated Yonggwang Nuclear Power Plant Unit 3 cycle 8. Analysis methodology for post-trip return-to-power SLB is quite different from that of a no return-to-power SLB and is more complicated. Therefore, it is necessary to develop an methodology to analyze the response of the NSSS parameter and the fuel performance for the post-trip return-to-power SLB events. In this analysis, the cases with and without offsite power were simulated by crediting 3-D reactivity feedback effect due to local heatup around stuck CEA and compared with the cases without 3-D reactivity feedback with respect to fuel performance, departure from nucleate boiling ratio (DNBR) and linear heat generation rate (LHGR).

  • PDF

A Safety Improvement for the Design Change of Westinghouse 2 Loop Auxiliary Feedwater System (웨스팅하우스형 원전의 보조급수계통 설계변경 영향 평가)

  • Na, Jang Hwan;Bae, Yeon Kyoung;Lee, Eun Chan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.15-19
    • /
    • 2013
  • The auxiliary feedwater is an important to remove the heat from the reactor core when the main feedwater system is unavailable. In most initiating events in Probabilistic Safety Assessment(PSA), the operaton of this system is required to mitigate the accidents. For one of domestic nuclear power plants, a design change of a turbine-driven auxiliary feedwater pump(TD-AFWP), pipe, and valves in the auxiliary system is implemented due to the aging related deterioration by long time operation. This change includes the replacement of the TD-AFWP, the relocation of some valves for improving the system availability, a new cross-tie line, and the installation of manual valves for maintenance. The design modification affects the PSA because the system is critical to mitigate the accidents. In this paper, the safety effect of the change of the auxiliary feedwater system is assessed with regard to the PSA view point. The results demonstrate that this change can supply the auxiliary feedwater from the TD-AFWP in the accident with the motor-driven auxiliary feedwater pump(MD-AFWP) unavailable due to test or maintenance. In addition, the change of MOV's normal position from "close" to "open" can deliver the water to steam generator in the loss of offsite power(LOOP) event. Therefore, it is confirmed that the design change of the auxiliary feedwater system reduces the total core damage frequency(CDF).

Assessment of RELAP5/MOD2 Code using Loss of Offsite Power Transient of Kori Unit 1 (고리 1호기 외부 전원 상실사고에 의한 RELAP5/MOD2코드 모델 평가)

  • Chung, Bub-Dong;Kim, Hho-Jung;Lee, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.12-19
    • /
    • 1990
  • The Loss of Offsite Power Transient at 77.5% power which occurred on June 9, 1981 at the Kori Unit 1 PWR (Pressurized Water Reactor) is simulated using the RELAP5/MOD2 system thermal-hydraulics computer code. Major thermal-hydraulic parameters are compared with the available plant data. The comparison of the analysis results with the plant data demonstrates that the RELAP5/MOD2 code has the capability to simulate the thermal-hydraulic behaviour of PWRs under accident conditions of this type with accuracy, except the pressurizer pressure and level. The pressurizer pressure increase is sensitive to the in surge now it is believed that the interracial heat transfer in a horizontal stratified flow regime may be estimated low and the compression effect due to insurge flow may be high. In the nodalization sensitivity study it is found that S/G noding with junctions between bypass plenum and steam dome is preferred to simulate the S/G water level decreasing and avoid the spurious level peak at trubine trip.

  • PDF

Analysis of Loss of Offsite Power Transient Using RELAP5/MOD1/NSC; II: KNU1 Design-Base Simulation (RELAP5/MOD1/NSC를 이용한 원자력 1호기 외부전원상실사고해석;II:설계기준사고)

  • Kim, Hyo-Jung;Chung, Bub-Dong;Lee, Young-Jin;Kim, Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.175-182
    • /
    • 1986
  • The KNUI (Korea Nuclear Unit 1) loss of offsite power transient as a design-base accident has been simulated using the RELAP5/MOD1/NSC computer code. The analysis is carried out using the best-estimate methodology, but the sequence and its assumptions are based on the evaluation methodology th at emphasizes conservatism. Important thermal-hydraulic parameters such as average temperature, steam generator level and pressurizer water volume are compared with the results in the KNU1 Final Safety Analysis Report (FSAR). The present analysis gives much lower RCS average temperature and pressurizer water volume, and much higher S/G water volume at the turnaround point, which may be considered to be additional improved safety margins. This is expected since the present analysis deals with the best-estimate thermal-hydraulic models as well as the initial conditions on a best-estimate basis. These additional safety margins may contribute to further validate the safety of the KNU1 in this type of accidents(Decrease in Heat Removal by the Secondary System).

  • PDF

Assessment of Relative Importance to the Early Effect of Released Radionuclides During Nuclear Power Plant Accident (원전 사고시 방출핵종의 조기 영향에 대한 상대적 중요도 평가)

  • Moon, Kwang-Nam;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.78-87
    • /
    • 1988
  • This article suggests the radionuclides which should be considered more important to the offsite consequence assesment during a nuclear power plant accident. For this purpose, the relative importance to the early health effects of released radionuclides on the major organs during the accident is estimated under the assumption of the same release fraction. The inventories of the 25 elements, 54 nuclides selected in the Reactor Safety Study are calculated by ORIGEN 2 code. The organs of interest in the estimation are G. I. track, bone marrow, thyroid and lung. The result shows the relative potential importance of radionuclides as follows: For G.I. track, Np, Ce, Ru, Y, and Zr are of importance in sequence, Np, I, La, Sr, Ba for bone marrow, I and Te for thyroid, Cm, Ce, Ru, Pu, Zr for lung. In addition to iodine and noble gases, therefore, the potential contribution of those nuclides listed above to the offsite consequences should not be overlooked for some accidents of particular sequence.

  • PDF

Risk Model Development for PWR During Shutdown (원자로 정지 동안의 위해도 모델 개발)

  • Yoon, Won-Hyo;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 1989
  • Numerous losses of decay heat removal capability have occurred at U during stutodwn while its significance to safety is needless to say. A study is carried out as an attempt to assess what could be done to lower the frequency of these events and to mitigate their consequences in the unlikely event that one occurs. The shutdown risk model is developed and analyzed using Event/Fault Tree for the typical pressurized water reactor. The human cognitive reliability (HCR) model, two-stage bayesian approach and staircase function model are used to estimate human reliability, initiating event frequency and offsite power non-recovery probability given loss of offsite power, respectively. The results of this study indicate that the risk of a Pm at shutdown is not much lower than the risk when the plant is operating. By examining the dominant accident sequences obtained, several design deficiencies are identified and it is found that some proposed changes lead to significant reduction in core damage frequency due to loss of cooling events.

  • PDF

A Buoyant Combined Solar-Wave Power Generation and Its Application for Emergency Power Supply of Nuclear Power Plant (부유식 태양광-파력 복합발전 개념 및 원자력발전소 비상전원을 위한 응용)

  • Cha, Kyung-Ho;Kim, Jung-Taek
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.37-41
    • /
    • 2011
  • This paper presents a Combined solar-wave Power Generation (CPG) concept that the CPG unit is maintained as buoyant at the level of sea water and it is also supported by a submerged tunnel, with the aim of supplying emergency electric power during the station blackout events of nuclear power plants. The CPG concept has been motivated from the 2011 Fukushima-Daiichi Accidents due to the loss of both offsite AC power and emergency diesel power caused by natural hazards such as earthquake and tsunami. The CPG is conceptualized by applying different types and different sites for emergency power generation, in order to reduce common cause failures of emergency power suppliers due to natural hazards. Thus, the CPG can provide a new mean for supplying emergency electric power during station blackout events of nuclear power plants. For this application, the CPG requirements are described with a typical configuration at the ocean side of a submerged tunnel.