• 제목/요약/키워드: Offshore wind turbine

검색결과 381건 처리시간 0.033초

해상 부유식 풍력 타워의 동적거동해석 (Analysis of Dynamic Behavior of Floating Offshore Wind Turbine System)

  • 장진석;손정현
    • 대한기계학회논문집A
    • /
    • 제35권1호
    • /
    • pp.77-83
    • /
    • 2011
  • 본 논문에서는 해상 부유식 풍력타워의 동역학 모델링이 제시되고, 다양한 해상환경하중인 풍하중, 파랑하중을 모델링하여 플랫폼의 동적 거동해석을 수행하였다. 풍하중을 모델링하기 위해 풍속은 높이에 따라 변하도록 고려하였고, 파랑하중은 상대운동 모리슨방정식을 이용하여 모델링 하였다. 동적 거동해석을 위해 동역학해석프로그램인 ADAMS 를 이용하였다. 부유식 플랫폼에 많이 쓰이는 tension leg platform 의 네 가지 타입에 대해 동적 거동특성을 비교하였다.

해상풍력타워 석션기초의 설치시 거동에 대한 모형 시험 연구 (Installation of Suction Caisson Foundation for Offshore Wind Turbine : Model Test)

  • 김동준;김수린;추연욱;김동수;이만수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.825-839
    • /
    • 2010
  • The global and domestic market for offshore wind farm is expected to grow fast, and the design and installation of substructure and foundation is getting more important. As for the offshore wind farms located in the shallow(depth < 20m) water, the construction and installation of the substructure and foundation makes up about 1/4 ~1/3 of the offshore wind farm construction cost, and the portion is expected to increase because the turbine capacity is increasing from 2 ~ 3MW to 5MW or larger and the water depth of wind farms is also increasing over 30m. As a foundation for offshore wind turbine, the suction caisson foundation is being considered to be a highly competitive alternative to the conventional monopile or gravity based structure, because it has features suitable for the offshore construction such as quick installation, no heavy equipment for penetration and no hammering noise for driving. In order to study the installation behaviour of the suction caisson, laboratory tests were performed with sand. The pore water pressure and displacement were measured to analyze the suction pressure during penetration, the penetration speed and the amount of heaving.

  • PDF

해상풍력 발전의 기술동향 및 모노파일 기술개발 방향 (Technical Issues for Offshore Wind-Energy Farm and Monopile Foundation)

  • 최창호;조삼덕;김주형;채종길
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.486-493
    • /
    • 2010
  • Recently, it has been a worldwide issue to develop offshore wind farm based on the past technical experiences of onshore wind turbine installation. In Korea, the government has the wind-energy to be a new-sustainable field of development to bring green-growth in near future and put political and fiscal efforts to support the academic and industrial technical development. Especially, there are much advancement for the fields of turbine, blade, bearing, grid connection, ETC. Correspondingly, technical needs do exist for the offshore foundation installation techniques in geotechnical point of view. Within few years, 2~5MW offshore wind turbines will be constructed at about 30m water depth and it is known that monopiles of D=4~6m are suitable types of foundation. In order to construct offshore wind-turbine foundation, technical developments for drilling machine, design manual, monitoring&maintenance technique are required. This paper presents technical issues with related to offshore wind farm and large diameter monopile in the point of renewable energy development.

  • PDF

Study on the P-Y Curve around the Mono-pile Foundation of Offshore Wind Turbine by Impulsive Breaking Wave Force

  • Go, Myeongjin;Kim, Namhyeong;Ko, Yongsu
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2014년도 춘계학술대회
    • /
    • pp.253-254
    • /
    • 2014
  • In offshore, various external forces such as wind force, wave force and impulsive breaking wave force act on offshore structures. Many researches about this forces are published. Kim and Cao(2008) published researche on wave force of vertical cylinder. Kim and Go(2013) performed research on the subgrade reaction by external forces. Among this forces, impulsive breaking force is more massive than other forces, especially. Therefore, the studies about impulsive breaking wave forces have been carried out. Chun and Shim(1999) analyzed dynamic behavior of cylindrical pile subjected to impulsive breaking wave force. In this study, when the impulsive breaking wave force acts on the offshore wind turbine, the subgrade reaction acting on the mono-pile of the offshore wind turbine is calculated by p-y curve. The calculation is carried out to the multi-layered.

  • PDF

Fully-coupled 시뮬레이션을 이용한 해상 monopile 풍력 발전기의 응력해석 (Load analysis of an offshore monopile wind turbine using fully-coupled simulation)

  • ;박현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.480-485
    • /
    • 2009
  • Offshore wind energy is gaining more attention. Ensuring proper design of offshore wind turbines and wind farms require knowledge of the external conditions in which the turbines and associated facilities are to operate. In this work, a three-bladed 5MW upwind wind turbine, which is supported by the monopile foundation, is studied by use of fully coupled aero-hydro-servo-elastic commercial simulation tool, 'GH-Bladed'$^{(R)}$. Specification of the structures are chosen from the OC3 (Offshore Code Comparison Collaboration) under "IEA Wind Annex XXIII-subtask2". The primary external conditions due to wind and waves are simulated. Design Load case 5.2 is investigated in this work. The steady state power curve and power production loads are evaluated. Comparison between different codes is made.

  • PDF

해상풍력 삼각지주형 하부구조물의 충격손상방지용 고무펜더의 두께결정 방법 (Method for Determining Thickness of Rubber Fenders of a Tripod Type Offshore Wind Turbine Substructure)

  • 이강수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권4호
    • /
    • pp.490-496
    • /
    • 2012
  • 본 연구의 목적은 바지선에 의해 발생하는 해상풍력발전기의 충격손상을 최소화 시키기 위한 것이다. 충격해석은 상용유한요소해석 프로그램인 ANSYS LS-Dyna를 통하여 분석하였다. 바지선속을 변화시켜 다양한 상태의 하중케이스를 고려하였고 충격방지고무의 비선형성을 고려한 시간이력해석을 수행하였으며 변형률 에너지, 전체 변형량, 플라스틱 변형률, 내부충격에너지, 영구손상된 변형량 등을 검토하였다. 충격속도에 변화에 따른 영구변형을 확인한 후 자연고무, 복합고무, 네오프렌 등의 고무시험 물성치로부터 구한 Mooney-Rivlin 상수를 적용하여 적절한 충격방지고무의 두께를 제안하였다. 본 연구를 통하여 구조물의 두께와 충격방지고무의 두께비에 대한 경향을 파악할 수 있으며 구조물의 설계에 적용할 수 있다.

해상풍력 구조물 설계를 위한 풍황 특성분석 (Analysis on wind condition characteristics for an offshore structure design)

  • 서현수;경남호;;김현구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.262-267
    • /
    • 2008
  • The long-term wind data are reconstructed from the short-term meteorological data to design the 4 MW offshore wind park which will be constructed at Woljeong-ri, Jeju island, Korea. Using two MCP (Measure-Correlate-Predict) models, the relative deviation of wind speed and direction from two neighboring reference weather stations can be regressed at each azimuth sector. The validation of the present method is checked about linear and matrix MCP models for the sets of measured data, and the characteristic wind turbulence is estimated from the ninety-percent percentile of standard deviation in the probability distribution. Using the Gumbel's model, the extreme wind speed of fifty-year return period is predicted by the reconstructed long-term data. The predicted results of this analysis concerning turbulence intensity and extreme wind speed are used for the calculation of fatigue life and extreme load in the design procedure of wind turbine structures at offshore wind farms.

  • PDF

해상풍력터빈 기초 구조물 설치로 인한 파랑거동 변화 검토 (Analysis on the Change of Wave Behaviour Due to Installation of Offshore Wind Turbine Foundations)

  • 김지영;강금석
    • 한국해안·해양공학회논문집
    • /
    • 제22권5호
    • /
    • pp.306-315
    • /
    • 2010
  • 대규모 해상풍력 개발이 예상되고 있는 가운데, 이러한 대규모 단지개발을 위해서는 사전 환경영향평가가 매우 중요하다. 해상풍력단지 개발 후보지 중 하나인 전북 위도 부근 해역에서의 파랑 관측 자료를 토대로 파랑추산 모형을 검증하고, 해상풍력터빈을 위한 직경 5 m의 모노파일 기초 35기 설치시 파랑 거동에 미치는 영향을 검토하였다. 파랑추산 모형의 유의파고 계산 결과, 관측자료와의 RMS 오차가 0.35 m 정도로 재현성이 우수함을 확인하였으며, 터빈이 설치되는 경우 파고 감쇠율이 1% 미만으로 영향이 거의 없음을 확인할 수 있었다.

Pushover 해석을 이용한 5MW급 해상풍력터빈의 지진취약도 (Seismic Fragility for 5MW Offshore Wind Turbine using Pushover Analysis)

  • 이상근;김동현;윤길림
    • 한국해양공학회지
    • /
    • 제27권4호
    • /
    • pp.98-106
    • /
    • 2013
  • Seismic fragility curves for an offshore wind-turbine structure were obtained. The dynamic response of an offshore wind turbine was analyzed by considering the nonlinear behavior of layered soil and the added mass effect due to seawater. A pile-soil interaction effect was considered by using nonlinear p-y, t-z curves. In the analysis, the amplification effect of ground acceleration through layered soil was considered by applying ground motion to each of the soil layers. The vertical variation in ground motion was found by one-dimensional free-field analysis of ground soils. Fragility curves were determined by damage levels in terms of tower stress and nacelle displacements that were found from static pushover analysis of the wind-turbine structure.

메가와트급 부유식 해상풍력발전기용 페어리드 체인 스토퍼의 강도 성능평가를 위한 구조 모형 시험 (Structural Model Test for Strength Performance Evaluation of Fairlead Chain Stopper Installed on MW Class Floating Type Offshore Wind Turbine)

  • 송창용
    • 한국산업융합학회 논문집
    • /
    • 제26권3호
    • /
    • pp.421-431
    • /
    • 2023
  • Recently, the destructive power of typhoons is continuously increasing due to the influence of global warming. In a situation where the installation of floating wind turbines is increasing around the world, concerns about the huge loss and collapse of floating offshore wind turbines due to strong typhoons are deepening. Regarding to the safe operation of the floating offshore wind turbine, the development of a new type of disconnectable mooring system is required. A new fairlead chain stopper considered in this study is devised to more easily attach or detach the floating offshore wind turbine with mooring lines comparing to other disconnectable mooring apparatuses. In order to investigate the structural safety of the initial design of fairlead chain stopper that can be applied to MW-class floating type offshore wind turbine, scale-down structural models were produced using a 3-D printer and structural tests were performed on the models. For the structural tests of the scale-down models, tensile specimens of acrylonitrile butadiene styrene material that was used in the 3-D printing were prepared, and the material properties were evaluated by performing the tensile tests. The finite element analysis of fairlead chain stopper was performed by applying the material properties obtained from the tensile tests and the same load and boundary conditions as in the scale-down model structural tests. Through the finite element analysis, the structural weak parts on the fairlead chain stopper were reviewed. The structural model tests were performed considering the main load conditions of fairlead chain stopper, and the test results were compared to the finite element analysis. Through the results of this study, it was possible to experimentally verify the structural safety of the initial design of fairlead chain stopper. It is also judged that the study results can be usefully used to improve the structural strength of fairlead chain stopper in a detailed design stage.