• Title/Summary/Keyword: Offshore wind turbine

Search Result 380, Processing Time 0.028 seconds

Structural Health Monitoring Technique for Tripod Support Structure of Offshore Wind Turbine (해상풍력터빈 트라이포드 지지구조물의 건전성 모니터링 기법)

  • Lee, Jong-Won
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.16-23
    • /
    • 2018
  • A damage detection method for the tripod support structure of offshore wind turbines is presented for structural health monitoring. A finite element model of a prototype tripod support structure is established and the modal properties are calculated. The degree and location of the damage are estimated based on the neural network technique using the changes of natural frequencies and mode shape due to the damage. The stress distribution occurring in the support structure is obtained by a dynamic analysis for the wind turbine system to select the output data of the neural network. The natural frequencies and mode shapes for 36 possible damage scenarios were used for the input data of the learned neural network for damage assessment. The estimated damages agreed reasonably well with the accurate ones. The presented method could be effectively applied for damage detection and structural health monitoring of various types of support structures of offshore wind turbines.

High-Power-Density Power Conversion Systems for HVDC-Connected Offshore Wind Farms

  • Parastar, Amir;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.737-745
    • /
    • 2013
  • Offshore wind farms are rapidly growing owing to their comparatively more stable wind conditions than onshore and land-based wind farms. The power capacity of offshore wind turbines has been increased to 5MW in order to capture a larger amount of wind energy, which results in an increase of each component's size. Furthermore, the weight of the marine turbine components installed in the nacelle directly influences the total mechanical design, as well as the operation and maintenance (O&M) costs. A reduction in the weight of the nacelle allows for cost-effective tower and foundation structures. On the other hand, longer transmission distances from an offshore wind turbine to the load leads to higher energy losses. In this regard, DC transmission is more useful than AC transmission in terms of efficiency because no reactive power is generated/consumed by DC transmission cables. This paper describes some of the challenges and difficulties faced in designing high-power-density power conversion systems (HPDPCSs) for offshore wind turbines. A new approach for high gain/high voltage systems is introduced using transformerless power conversion technologies. Finally, the proposed converter is evaluated in terms of step-up conversion ratio, device number, modulation, and costs.

A Study on the vibration characteristics of offshore wind turbine tower including seabed soil-structure interaction (해저지반-구조물 상호작용을 고려한 해상풍력발전타워의 진동특성)

  • Lee, Jung-Tak;Lee, Kang-Su;Son, Choong-Yul;Park, Jong-Vin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.416-422
    • /
    • 2009
  • Offshore wind turbine are subjected to more various loads than general land structures and the stability of structures is supported by the piles driven deeply in the subsoil. So it is more important for offshore structures to consider seabed soil-structure interaction than land structures. And the response of a fixed offshore structure supported by pile foundations is affected by resist dynamics lateral loading due to wave forces and ocean environmental loads. In this study, offshore wind tower response are calculated in the time domain using a finite element package(ANSYS 11.0). Several parameters affecting the vibration characteristics of the natural frequency and mode shape and the tower response have been investigated.

  • PDF

Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers

  • Zuo, Haoran;Bi, Kaiming;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.435-449
    • /
    • 2020
  • To effectively extract the vast wind resource, offshore wind turbines are designed with large rotor and slender tower, which makes them vulnerable to external vibration sources such as wind and wave loads. Substantial research efforts have been devoted to mitigate the unwanted vibrations of offshore wind turbines to ensure their serviceability and safety in the normal working condition. However, most previous studies investigated the vibration control of wind turbines in one direction only, i.e., either the out-of-plane or in-plane direction. In reality, wind turbines inevitably vibrate in both directions when they are subjected to the external excitations. The studies on both the in-plane and out-of-plane vibration control of wind turbines are, however, scarce. In the present study, the NREL 5 MW wind turbine is taken as an example, a detailed three-dimensional (3D) Finite Element (FE) model of the wind turbine is developed in ABAQUS. To simultaneously control the in-plane and out-of-plane vibrations induced by the combined wind and wave loads, another carefully designed (i.e., tuned) spring and dashpot are added to the perpendicular direction of each Tuned Mass Damper (TMD) system that is used to control the vibrations of the tower and blades in one particular direction. With this simple modification, a bi-directional TMD system is formed and the vibrations in both the out-of-plane and in-plane directions are simultaneously suppressed. To examine the control effectiveness, the responses of the wind turbine without control, with separate TMD system and the proposed bi-directional TMD system are calculated and compared. Numerical results show that the bi-directional TMD system can simultaneously control the out-of-plane and in-plane vibrations of the wind turbine without changing too much of the conventional design of the control system. The bi-directional control system therefore could be a cost-effective solution to mitigate the bi-directional vibrations of offshore wind turbines.

Damage Estimation Method for Monopile Support Structure of Offshore Wind Turbine (모노파일 형식 해상풍력발전기 지지구조물의 손상추정기법)

  • Kim, Sang-Ryul;Lee, Jong-Won;Kim, Bong-Ki;Lee, Jun-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.667-675
    • /
    • 2012
  • A damage estimation method for support structure of offshore wind turbine using modal parameters is presented for effective structural health monitoring. Natural frequencies and mode shapes for a support structure with monopile of an offshore wind turbine were calculated considering soil condition and added mass. A neural network was learned based on training patterns generated by the changes of natural frequency and mode shape due to various damages. Natural frequencies and mode shapes for 10 prospective damage cases were input to the trained neural network for damage estimation. The identified damage locations and severities agreed reasonably well with the accurate damages. Multi-damage cases could also be successfully estimated. Enhancement of estimation result using another parameters as input to neural network will be carried out by further study. Proposed method could be applied to other type of support structure of offshore wind turbine for structural health monitoring.

Risk Assessment of Offshore Wind Turbine Support Structures Considering Scouring (세굴을 고려한 해상풍력터빈 지지구조물 위험도 평가)

  • Kim, Young Jin;Lee, Dae Yong;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.524-530
    • /
    • 2020
  • The risk of offshore wind turbine support structures by scour has been proposed. The proposed utilize probabilities of scour depths and fragilities according to scour depth and a modification of a seismic risk analysis method. The probability distribution of scour depth was calculated using a equation which is suitable to consider marine environmental conditions such as significant wave height, significant period, and current velocity, and dynamic analysis was performed on an offshore wind turbine equipped with an suction bucket to find fragility. Then, the risk of offshore wind turbine support structure considering scour can be found by integrating the scour probability and the fragility.

CFD Study on Aerodynamic Power Output of 6 MW Offshore Wind Farm According to the Wind Turbine Separation Distance (CFD를 활용한 6 MW 해상풍력발전단지의 풍력터빈 이격거리에 따른 공기역학적 출력 변화연구)

  • Choi, Nak-Joon;Nam, Sang-Hyun;Jeong, Jong-Hyun;Kim, Kyung-Chun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1063-1069
    • /
    • 2011
  • This paper presents aerodynamic power outputs of wind turbine of 6 MW wind farm composed of 3 sets of 2 MW wind turbine according to the separation distance by using CFD. Layout design including offshore wind farm and onshore wind farm is key factor for the initial investment cost, annual energy production and maintenance cost. For each wind turbine rotor, not actuator disc model with momentum source but full 3-dimensional model is used for CFD and it has a great technical meaning. The results of this study can be applied to the offshore wind farm layout design effectively.

An evaluation on suitability of suction caisson foundation for 5MW offshore wind turbine (5MW급 해상풍력발전시스템용 Suction Caisson 하부구조물 적합성 평가)

  • Kim, Yongchun;Park, Hyunchul;Chung, Chinwha;Kwon, Daeyong;Lee, Seunugmin;Shi, Wei
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.183.2-183.2
    • /
    • 2010
  • A three-dimensional numerical modeling using the finite element method for the suction caisson are described to decide suitability as foundation of offshore wind turbine in this paper. In the simulation, soil-structure interaction is defined by comparing experiment data. The reaction of monopod suction caisson is presented by moment loading which was calculated by FAST. Tendency of suction caisson appeared by difference of length and diameter of skirt under coupled loading. Length and diameter of skirt are suggested and evaluated as a offshore wind turbine.

  • PDF

Development Status of 3MW Class Offshore Wind Turbine (3MW급 해상 풍력발전시스템 개발현황)

  • Joo, Wan-Don;Park, Jeung-Hun;Choi, June-Hyug;Lim, Chae-Wook;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.366-369
    • /
    • 2007
  • This paper presents the general results of the conceptual design of a 3MW class offshore wind turbine named WinDS 3000 under development. In WinDS 3000, an integrated drive train design, three stage gearbox and permanent magnet generator (PMG) with fully rated converters have been introduced. A pitch regulated variable speed power control with individual pitch control has been adopted to regulate rotor torque while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. Through the introduction of WinDS 3000, it is expected that helpful to understanding of the development status of 3MW offshore wind turbine.

  • PDF

A Study on the Optimal Shape Design of a Floating Offshore Wind Turbine (부유식 해상 풍력 발전기의 최적 형상 설계에 관한 연구)

  • Park, Jeong-Hoon;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.171-179
    • /
    • 2015
  • Usually, in case of wind turbines on land, there are a lot of constraints for installation such as the insufficient installation space and noise pollution. On March 11, 2011, a nuclear leakage accident occurred due to the tsunami caused by the earthquake in Japan and then there have been a rapidly growing interest in floating offshore wind turbines. In this study, an optimization of the substructure of a semi-submersible type floating offshore wind turbine was made. Design variables were set and design alternatives were fixed. UOU-FAST was used for motion analysis in combined environmental conditions of waves and wind. Response Amplitude Operators(RAOs) were compared between the design alternatives.