• Title/Summary/Keyword: Offshore structures

Search Result 834, Processing Time 0.031 seconds

Active Control of Fixed Offshore Structures (고정식 해양구조물의 능동제어)

  • 방제묵;김상범;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.113-119
    • /
    • 1994
  • Vibration control of offshore structures subjected to wave loads is studied. The reduction of the dynamic responses of offshore towers subjected to wind generated random ocean waves is an important issue in the aspect of serviceability, fatigue life and safety of the structure. In this thesis, the effectiveness of the active tuned mass damper(ATMD) compared with the tuned mass damper(TMD) is mainly considered. Instantaneous optimal control scheme is employed for the active vibration control and Kalman filtering technique is used for the estimation of unmeasured response of structures. In practice, displacements and velocities could not be measured as easily as accelerations. So the state estimation methods like Kalman filter is very important. Numerical simulation is conducted for guarantee the effectiveness of ATMD for offshore structures.

  • PDF

Structural health monitoring of innovative civil engineering structures in Mainland China

  • Li, Hong-Nan;Li, Dong-Sheng;Ren, Liang;Yi, Ting-Hua;Jia, Zi-Guang;LI, Kun-Peng
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.1-32
    • /
    • 2016
  • This paper describes the backgrounds, motivations and recent history of structural health monitoring (SHM) developments to various types of engineering structures. Extensive applications of SHM technologies in bridges, high-rise buildings, sport avenues, offshore platforms, underground structures, dams, etc. in mainland China are summarily categorized and listed in tables. Sensors used in implementations, their deployment, damage identification strategies if applicable, preliminary monitoring achievements and experience are presented in the lists. Finally, existing problems and promising research efforts in civil SHM are discussed, highlighting challenges and future trends.

Comparison of Numerical Analyses and Model Test for Evaluation on Hydroelastic and Higher-order Springing Responses of Fixed Cylindrical Structure

  • Kim, Hyun-Sung;Won, Younguk;Oh, Young Jae;Lee, Kangsu;Kim, Byoung Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.191-202
    • /
    • 2021
  • Studies on very large offshore structures are increasing owing to the development of deep sea, large-scale energy generation using ocean resources, and so on. The enlargement of offshore structures makes the hydroelastic effect and low natural frequency related responses important. Numerical analyses and model tests for hydroelastic and higher-order springing responses of fixed cylindrical structures are conducted in this study. The panel methods with and without the hydroelastic effect with shell elements, and the Morison analysis method with beam elements are applied. To observe the hydroelastic effect for structural strength, two structures are considered: bottom-fixed cylindrical structures with high and low bending stiffnesses, respectively. The surge motions at the top of the structure and bending stresses on the structure are observed under regular and irregular wave conditions. The regular wave conditions are generated considering the ratios of the cylindrical outer diameter to the wave lengths, and keeping the wave steepness constant. The model tests are performed in the three-dimensional ocean engineering basin in the KRISO (Korea Research Institute of Ships and Ocean Engineering). From the numerical and experimental results, in which the hydroelastic responses are only observed in the case of the structure with a low bending stiffness, it is confirmed that the hydroelastic responses are highly dependent on the structural stiffness. Additionally, the higher-order phenomenon on the specified wave condition is analyzed by observing the higher-order springing responses when the incident wave frequency or its multiples with the high wave height coincides with the natural frequency of the structure.

Prescreening of Environmental Conditions for Prediction of Severe Operation Condition of Offshore Structures

  • Lim, Dong-Hyun;Kim, Yonghwan;Kim, Taeyoung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.252-267
    • /
    • 2015
  • Offshore structures might encounter several environmental and operating conditions during their lifetime of several decades. In order to predict the dynamic behavior of offshore structures, several simulation cases should be considered to deal with all the combinations of ocean environments and operating conditions. Because a sophisticated time-domain coupled dynamic analysis requires an extremely large amount of computational time to handle all the possible cases, an efficient preliminary process to prescreen the probability of severe environmental conditions can be helpful in downsizing the number of simulation cases and computational effort. In this study, a prescreening procedure to reduce the number of environmental conditions for dynamic analyses of offshore structures is proposed. For the efficiency of the procedure, frequency-domain theories were adopted to estimate the platform offset, using quasi-static analyses in line tension prediction. The results were validated by comparing with those of dynamic analysis coupled between platform and mooring lines, and reasonable agreement was observed. In addition, the characteristics of environmental conditions classified to be severe to the system were investigated through the application of the developed prescreening scheme to several actual environmental conditions.

A Study on Weight Estimation Model of Floating Offshore Structures using Enhanced Genetic Programming Method (개선된 유전적 프로그래밍 방법을 이용한 부유식 해양 구조물의 중량 추정 모델 연구)

  • Um, Tae-Sub;Roh, Myung-Il;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of direct measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model with the genetic programming was suggested for FPSO. The weight estimation model using genetic programming was established by fixing the independent variables based on this data. In addition, the correlation analysis was performed to make up for the weak points of genetic programming; it is apt to induce over-fitting when the number of data is relatively smaller than that of independent variables. That is, by reducing the number of variables through the analysis of the correlation between the independent variables, the increasing effect in the number of weight data can be expected. The reliability of the developed weight estimation model was within 2% of error rate.

Concurrent engineering solution for the design of ship and offshore bracket parts and fabrication process

  • Kim, Tae-Won;Lim, Sang-Sub;Seok, Ho-Hyun;Kang, Chung-Gil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.376-391
    • /
    • 2013
  • Brackets in ships and offshore structures are added structures that can endure stress concentrations. In this study, a concurrent engineering solution was proposed, and a high strength low carbon cast steel alloy applicable to offshore structures was designed and developed. The yield strength and ultimate tensile strength of the designed steel were 480 and 600 MPa, respectively. The carbon equivalent of the steel was 0.446 with a weld crack susceptibility index of 0.219. The optimal structural design of the brackets for offshore structures was evaluated using ANSYS commercial software. The possibility of replacing an assembly of conventional built-up brackets with a single casting bulb bracket was verified. The casting process was simulated using MAGMAsoft commercial software, and a casting fabrication process was designed. For the proposed bulb bracket, it was possible to reduce the size and weight by approximately 30% and 50%, respectively, compared to the conventional type of bracket.

Structural performance assessment of fixed offshore platform based on in-place analysis

  • Raheem, Shehata E. Abdel;Aal, Elsayed M. Abdel;AbdelShafy, Aly G.A.;Mansour, Mahmoud H.;Omar, Mohamed
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.433-454
    • /
    • 2020
  • In-place analysis for offshore platforms is essentially required to make proper design for new structures and true assessment for existing structures. The structural integrity of platform components under the maximum and minimum operating loads of environmental conditions is required for risk assessment and inspection plan development. In-place analyses have been executed to check that the structural member with all appurtenances robustness and capability to support the applied loads in either storm condition or operating condition. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The analysis includes interpretation of dynamic design parameters based on the available site-specific data, together with foundation design recommendations for in-place loading conditions. The SACS software is utilized to calculate the natural frequencies of the model and to obtain the response of platform joints according to in-place analysis then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have important effects on the results of the in-place analysis behavior. The result shows that the in-place analysis is quite crucial for safe design and operation of offshore platform and assessment for existing offshore structures.

Numerical wind load estimation of offshore floating structures through sustainable maritime atmospheric boundary layer

  • Yeon, Seong Mo;Kim, Joo-Sung;Kim, Hyun Joe
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.819-831
    • /
    • 2020
  • Wind load is one of the major design loads for the hull and mooring of offshore floating structures, especially due to much larger windage area above water than under water. By virtue of extreme design philosophy, fully turbulent flow assumption can be justified and the hydrodynamic characteristics of the flow remain almost constant which implies the wind load is less sensitive to the Reynolds number around the design wind speed than wind profile. In the perspective of meteorology, wind profile used for wind load estimation is a part of Atmospheric Boundary Layer (ABL), especially maritime ABL (MBL) and have been studied how to implement the profile without losing turbulence properties numerically by several researchers. In this study, the MBL is implemented using an open source CFD toolkit, OpenFOAM and extended to unstable ABL as well as neutral ABL referred to as NPD profile. The homogeneity of the wind profile along wind direction is examined, especially with NPD profile. The NPD profile was applied to a semi-submersible rig and estimated wind load was compared with the results from wind tunnel test.

New Design for Jacket-type Offshore Wind Turbine Support Structure for Southwest Coast of South Korea

  • Choi, Byeong-Ryoel;Jo, Hyo-Jae;Choi, Han-Sik;Ha, Sung-Yeol;Park, Young-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.184-192
    • /
    • 2017
  • The Korea Offshore Wind Power (KWOP) cooperation is planning to construct offshore wind energy farms with an overall rated power of 2.5 GW along the southwestern coast by 2019. Hitherto, various structural types of support structures for offshore wind turbines have been being proposed, but these structures have lacked economic analysis studies. Therefore, their economical superiority to existing types has been difficult to guarantee. An offshore structure with economic efficiency will have a minimum amount of mobilizing equipment and short offshore construction period because of the application of rapid installation methods. Thus, the development of a new support structure with economic efficiency is generally considered to be necessary. Accordingly, this paper proposes a newly developed and more economical jacket type for the offshore support structure. This study confirmed its structural safety and performance by conducting a structural analysis and eigenvalue analysis. The manufacturing and installation costs were then estimated. As a result, the new jacket type of offshore support structure proposed in this study significantly reduced the manufacturing and installation costs. Therefore, it is expected that the proposed jacket will contribute to reducing construction expenses for new wind power farms and invigorating wind power farm businesses.