• 제목/요약/키워드: Offshore Wind Turbines

검색결과 173건 처리시간 0.026초

해상 풍력발전의 경제성 분석 (Estimation of Cost of Energy for Offshore Wind Turbines)

  • 정태영;문석준;이한민;임채환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.177.1-177.1
    • /
    • 2010
  • Large offshore wind farms have actively been developed in order to meet the needs for wind energy since the land-based wind farms have almost been fully developed especially in Europe. The key problem for the construction of offshore wind farms may be on the high cost of energy compared to land-based ones. NREL (National Renewable Energy Laboratory) has developed a spreadsheet-based tool to estimate the cost of wind-generated electricity from both land-based and offshore wind turbines. Component formulas for various kinds and scales of wind turbines were made using available field data. Annual energy production has been estimated based on the Weibull probability distributions of wind. In this paper, this NREL estimation model is introduced and applied to the offshore wind turbines now under designing or in production in Korea, and the result is discussed.

  • PDF

해상풍력 발전기용 초고강도 그라우트 개발을 위한 기초적 연구 (Basic Study on Development of Ultra-high Strength Grout for Offshore Wind Turbines)

  • 임명관;하상수
    • KIEAE Journal
    • /
    • 제15권1호
    • /
    • pp.155-160
    • /
    • 2015
  • The annual average of energy sources is continuously increasing at a rate of 5.8%, and particularly, the power generation proportion of new/renewable energy is increasing significantly. Furthermore, South Korea has established a national energy master plan for 2008-2030 and is aiming at obtaining approximately 11% of total energy production from the wind turbine sector. Although offshore wind turbines are similar to wind turbines installed on land, they require materials with excellent dynamic properties and durability to prevent damage due to seawater at the lower parts and connecting parts. The lower parts of wind turbines are submerged in seawater, and the upper and lower parts are connected by filling the connecting part with grout. This paper describes the test results of the process of determining the mix ratios to develop ultra-high grout for offshore wind turbines. There is virtually no relevant technology regarding grout for offshore wind turbines in South Korea that can be referenced for the process of determining the mix ratios. Therefore, tests were conducted for determining compression strength, elastic modulus, flexural strength, density, constructability (floor test), and early strength by referencing a high-performance grout produced in South Korea, and the mixing process for achieving the goal strengths was described using the Korean Industrial Standards (KS) as the reference.

풍력발전기의 에너지 비용 산출에 대한 고찰 (A Study on the Estimation Model of Cost of Energy for Wind Turbines)

  • 정태영;문석준;임채환
    • 신재생에너지
    • /
    • 제8권4호
    • /
    • pp.3-12
    • /
    • 2012
  • Large offshore wind farms have actively been developed in order to meet the needs for wind energy since the land-based wind farms have almost been fully developed especially in Europe. The key problem for the construction of offshore wind farms may be on the high cost of energy compared to land-based ones. NREL (National Renewable Energy Laboratory) has developed a spreadsheet-based tool to estimate the cost of wind-generated electricity from both land-based and offshore wind turbines. Component formulas for various kinds and scales of wind turbines were made using available field data. In this paper, this NREL estimation model is introduced and applied to the offshore wind turbines now under designing or in production in Korea, and the result is discussed.

Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers

  • Zuo, Haoran;Bi, Kaiming;Hao, Hong
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.435-449
    • /
    • 2020
  • To effectively extract the vast wind resource, offshore wind turbines are designed with large rotor and slender tower, which makes them vulnerable to external vibration sources such as wind and wave loads. Substantial research efforts have been devoted to mitigate the unwanted vibrations of offshore wind turbines to ensure their serviceability and safety in the normal working condition. However, most previous studies investigated the vibration control of wind turbines in one direction only, i.e., either the out-of-plane or in-plane direction. In reality, wind turbines inevitably vibrate in both directions when they are subjected to the external excitations. The studies on both the in-plane and out-of-plane vibration control of wind turbines are, however, scarce. In the present study, the NREL 5 MW wind turbine is taken as an example, a detailed three-dimensional (3D) Finite Element (FE) model of the wind turbine is developed in ABAQUS. To simultaneously control the in-plane and out-of-plane vibrations induced by the combined wind and wave loads, another carefully designed (i.e., tuned) spring and dashpot are added to the perpendicular direction of each Tuned Mass Damper (TMD) system that is used to control the vibrations of the tower and blades in one particular direction. With this simple modification, a bi-directional TMD system is formed and the vibrations in both the out-of-plane and in-plane directions are simultaneously suppressed. To examine the control effectiveness, the responses of the wind turbine without control, with separate TMD system and the proposed bi-directional TMD system are calculated and compared. Numerical results show that the bi-directional TMD system can simultaneously control the out-of-plane and in-plane vibrations of the wind turbine without changing too much of the conventional design of the control system. The bi-directional control system therefore could be a cost-effective solution to mitigate the bi-directional vibrations of offshore wind turbines.

해상풍력발전용 Foundation에 관한 해외 동향 (The Development of the Foundation of Offshore Wind Turbines)

  • ;박현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.290-294
    • /
    • 2008
  • Offshore wind farms will contribute significantly to the renewable generation of electricity for the world. The economic development of wind farms depends, however, on development of efficient solutions to a number of technical issues, one of these being the foundations for the offshore turbines. We review here the results of recent research for wind turbine foundations. Also it is a short overview of some of the challenges facing the growth of offshore wind energy foundation technology.

  • PDF

A Study on the Application of Skirt Plates on Jacket Support Structures of Offshore Wind Turbines

  • Choi, Byeong-Ryoel;Choi, Han-Sik;Jo, Hyo-Jae;Lee, Sang-Hyep;Park, Young-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.47-52
    • /
    • 2018
  • The Korea Offshore Wind Power (KOWP) is planning to construct offshore wind energy farms with an overall rated power of 2.5 GW in the south-western coast of the country until 2019. Various types of support structures for offshore wind turbines have been proposed in the past. Nevertheless, in South Korea, jacket structures have in general, been applied as support structures for offshore wind turbines owing to the many accumulated experiences and know-how regarding this kind of support structure. The choice of offshore structure is mainly influenced by site conditions such as seabed soil type and sea environment during installation. In installing jacket sets on the seabed, the mudmat is necessary to maintain the equilibrium of the jacket without the aid of additional devices. Hence, this study proposes the installation of skirt plates underneath the bottom frame of jackets in order to improve the installation stability of jacket structures under rougher sea conditions. To confirm the effect of skirt plates, installation stability analyses considering overturning, sliding and bearing capacity have been performed. From the results, it is shown that jacket structures with skirt plates can contribute to improving the sliding stability of the structures of new wind power farms, while providing economic benefits.

Wind spectral characteristics on strength design of floating offshore wind turbines

  • Udoh, Ikpoto E.;Zou, Jun
    • Ocean Systems Engineering
    • /
    • 제8권3호
    • /
    • pp.281-312
    • /
    • 2018
  • Characteristics of a turbulence wind model control the magnitude and frequency distribution of wind loading on floating offshore wind turbines (FOWTs), and an in-depth understanding of how wind spectral characteristics affect the responses, and ultimately the design cost of system components, is in shortage in the offshore wind industry. Wind spectrum models as well as turbulence intensity curves recommended by the International Electrotechnical Commission (IEC) have characteristics derived from land-based sites, and have been widely adopted in offshore wind projects (in the absence of site-specific offshore data) without sufficient assessment of design implications. In this paper, effects of wind spectra and turbulence intensities on the strength or extreme responses of a 5 MW floating offshore wind turbine are investigated. The impact of different wind spectral parameters on the extreme blade loads, nacelle accelerations, towertop motions, towerbase loads, platform motions and accelerations, and mooring line tensions are presented and discussed. Results highlight the need to consider the appropriateness of a wind spectral model implemented in the strength design of FOWT structures.

Layout optimization for multi-platform offshore wind farm composed of spar-type floating wind turbines

  • Choi, E.H.;Cho, J.R.;Lim, O.K.
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.751-761
    • /
    • 2015
  • A multi-platform offshore wind farm is receiving the worldwide attention for the sake of maximizing the wind power capacity and the dynamic stability at sea. But, its wind power efficiency is inherently affected by the interference of wake disturbed by the rotating blades, so its layout should be appropriately designed to minimize such wake interference. In this context, the purpose of this paper is to introduce a layout optimization for multi-platform offshore wind farm consisted of 2.5MW spar-type floating wind turbines. The layout is characterized by the arrangement type of wind turbines, the spacing between wind turbines and the orientation of wind farm to the wind direction, but the current study is concerned with the spacing for a square-type wind farm oriented with the specific angle. The design variable and the objective function are defined by the platform length and the total material volume of the wind farm. The maximum torque loss and overlapping section area are taken as the constraints, and their meta-models expressed in terms of the design variable are approximated using the existing experimental data and the geometry interpretation of wake flow.

해상풍력발전 지지구조물의 유지보수용 수중 기둥등반로봇에 관한 실험적 연구 (Experimental Study on an Underwater Pole Climb Robot for the Maintenance of Offshore Wind Turbine Substructures)

  • 임은철;고진환
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.238-244
    • /
    • 2022
  • Maintenance works of offshore wind turbines could take a longer time, which causes the reduction of their energy production efficiency, than those of onshore wind turbines owing to severe offshore environment. Subsequently, preventive maintenance measures are required to increase the production efficiency. Thus, we proposed a wheel-based Underwater Pole Climbing Robot (UPCR) platform, which was aimed at the periodic inspection and maintenance of the substructures of the offshore wind turbines, with three advantages: high speed, good mobility and low power consumption. In the proposed platform, a self-locking system using a gripper module was adopted for preventing slippery problem and a dual configuration was chosen for moving on a branched structure. As a result, the proposed robot was able to continuously climb, preserve it's position at the pole without consuming energy, and move from the pole to the other branched pole. The results of this research show that the UPCR has basic moving capabilities required for the underwater work for the substructures of the offshore wind turbines.

자중조절형 해상풍력 지지구조 개념설계 및 부유이송 현장시험 (Conceptual Design of Self-Weighing Support Structure for Offshore Wind Turbines and Self-Floating Field Test)

  • 김석태;김동현;강금석;정민욱
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권4호
    • /
    • pp.631-638
    • /
    • 2016
  • 해상풍력발전은 경관 및 소음 등의 문제 및 풍황자원 고갈로 인한 사업부지 확보가 어려운 육상풍력발전의 대안으로 주목받고 있다. 해상풍력은 해상에 풍력터빈을 세우기 때문에 경관 훼손이나 소음으로 인한 민원발생이 적고 상대적으로 풍황자원이 풍부하기 때문에 발전생산성이 높다. 그러나 육상풍력에 비해 해상풍력은 설치비가 높아 경제성이 떨어뜨리는 요인으로 작용한다. 이러한 높은 설치비는 해상작업에 필요한 대형장비의 대여기간과 높은 대여료에서 기인하는데, 본 논문에서는 대형 해상장비의 사용을 최소화하여 설치할 수 있는 해상풍력 지지구조의 개념설계를 수행하였다.