• Title/Summary/Keyword: Offshore Platform Design

Search Result 127, Processing Time 0.021 seconds

LMU Design Optimization for the Float-Over Installation of Floating Offshore Platforms (부유식 해양구조물의 플로트오버 설치용 LMU 최적설계)

  • Kim, Hyun-Seok;Park, Byoungjae;Sung, Hong Gun;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2021
  • A Leg Mating Unit (LMU) is a device utilized during the float-over installation of offshore structures that include hyperelastic pads and mating part. The hyperelastic pads absorb the loads, whereas the mating part works as guidance between topside and supporting structures during the mating sequence of float-over installation. In this study, the design optimization of an LMU for the float-over installation of floating-type offshore structures is conducted to enhance the performance and to satisfy the requirements defined by classification society regulations. The initial dimensions of the LMU are referred to the dimensions of those used in fixed-type float-over installation because only the location and the number of LMUs are known. The two-parameter Mooney-Rivlin model is adopted to describe the hyperelastic pads under given material parameters. Geometric variables, such as the thickness, height, and width of members, as well as configuration variables, such as the angle and number of members, are defined as design variables and are parameterized. A sampling-based design sensitivity analysis based on latin hypercube sampling method is performed to filter the important design variables. The design optimization problem is formulated to minimize the total mass of the LMU under maximum von Mises stress and reaction force constraints.

Commercial fishery assessment of Malaysian water offshore structure

  • Mohd, Mohd Hairil;Thiyahuddin, Mohd Izzat Mohd;Rahman, Mohd Asamudin A;Hong, Tan Chun;Siang, Hii Yii;Othman, Nor Adlina;Rahman, Azam Abdul;Rahman, Ahmad Rizal Abdul;Fitriadhy, Ahmad
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.9
    • /
    • pp.473-488
    • /
    • 2022
  • To have a better understanding of the impact of the PETRONAS oil and gas platform on commercial fisheries activities, Universiti Malaysia Terengganu (UMT) examined two approaches which are data collection from satellite and data collection from fishermen and anglers. By profiling the anglers who utilize reefed oil and gas structures for fishing, it can determine if the design and location of the reef platforms will benefit or negatively impacts those anglers and fisherman. Furthermore, this assessment will be contributing to the knowledge regarding the value of offshore oil and gas platforms as fisheries resources. Collectively, the apparent fishing activity data included, combined with the findings in the reefing viability index will help to inform PETRONAS's future decommissioning decisions and may help determine if the design and proposed locations for future rigs-to-reefs candidates would benefit commercial fishing groups, further qualifying them as appropriate artificial reef candidates. The method applied in this study is approaching by using a data satellite known as Google's Global Fishing Watch technology, which is one of the applications to measure commercial fishing efforts around the globe. The apparent commercial fishing effort around the selected twelve PETRONAS platforms was analyzed from January 2012 to December 2018. Using the data collection from fishermen which is the total estimation of commercial fish value cost (in Malaysia ringgit, MYR [RM]) in Peninsular Malaysia Asset, Sabah Asset, and Sarawak Operation region. The data were extracted every month from 2016 to 2018 from the National Oceanic and Atmospheric Administration database. Most of the selected platforms that show a high frequency of vessels around the year are platform KP-A, platform BG-A and platform PL-B. The estimated values of commercial fishes varied between platforms, with ranged from RM 10,209.92 to RM 89,023.78. Thus, platforms with high commercial fish value are selected for reefing in-situ and will serve multi-purposes and benefit the locals as well as the country. The current study has successfully assessed the potential reefing area of the Malaysian offshore environment with greater representativeness and this paper focused on its potential as a new fishing ground.

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (II-Experimental study)

  • He, Xiao-Yu;Zhao, Tie-Wei;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Based on the change of traditional viscoelastic damper structure, a brand-new damper is designed to control simultaneously the translational vibration and the rotational vibration for platforms. Experimental study has been carried out on the mechanical properties of viscoelastic material and on its multi-dimensional seismic response control effect of viscoelastic damper. Three types of viscoelastic dampers with different shapes of viscoelastic material are designed to test the influence of excited frequency, strain amplitude and ambient temperature on the mechanical property parameters such as circular dissipation per unit, equivalent stiffness, loss factor and storage shear modulus. Then, shaking table tests are done on a group of single-storey platform systems containing one symmetric platform and three asymmetric platforms with different eccentric forms. Experimental results show that the simulation precision of the restoring force model is rather good for the shear deformation of viscoelastic damper and is also satisfied for the torsion deformation and combined deformations of viscoelastic damper. The shaking table tests have verified that the new-type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform.

H filter design for offshore platforms via sampled-data measurements

  • Kazemy, Ali
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.187-194
    • /
    • 2018
  • This paper focuses on the $H_{\infty}$ filter design problem for offshore steel jacket platforms. Its objective is to design a full-order state observer for offshore platforms in presence of unknown disturbances. To make the method more practical, it is assumed that the measured variables are available at discrete-time instants with time-varying sampling time intervals. By modelling the sampling intervals as a bounded time-varying delay, the estimation error system is expressed as a time-delay system. As a result, the addressed problem can be transformed to the problem of stability of dynamic error between the system and the state estimator. Then, based on the Lyapunov-Krasovskii Functional (LKF), a stability criterion is obtained in the form of Linear Matrix Inequalities (LMIs). According to the stability criterion, a sufficient condition on designing the state estimator gain is obtained. In the end, the proposed method is applied to an offshore platform to show its effectiveness.

Structural reliability analysis of offshore structure at cold region (저온해역에서의 해양구조물에 대한 구조신뢰성 해석)

  • 이주성
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.8-19
    • /
    • 1997
  • In this study an adequate type of offshore structure at the Sakhalin region as cold region is proposed and its structural design results are presented based on the reliability analysis. Structural safety assessment has been carried out for the proposed offshore structure at the Sakhalin area as designed by the reliability method. And a rational design procedure is presented based on the reliability analysis. Followings are drawn through the present study : - Four colum TLP structure is proposed as an adequate offshore structure type at the cold region like the Sakhalin region and the reliability-based structural design results are presented. It is seen that the proposed type is a more adequate and economic than the fixed type. - Safety assessment of the proposed structure applying the extended incremental load method is performed. - Referring the allowable safety level for offshore structures it has been found present TLP structure has sufficient structural safety at the system level as well as at the component level.

  • PDF

Conceptual Design of Motion Reduction Device for Floating Wave-Offshore Wind Hybrid Power Generation Platform (부유식 파력-해상풍력 복합발전 플랫폼의 운동저감장치 개념설계)

  • Park, Sewan;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.9-20
    • /
    • 2018
  • The present study deals with the conceptual design of a motion reduction device for a floating wave-offshore wind hybrid power generation platform. A damping plate attached to the bottom of a column of a large semi-submersible is introduced to reduce the motion of the platform. Performance analyses on various shapes and configurations of damping plates were performed using the potential flow solver, and the appropriate configuration and size of the damping plate were selected based on the numerical results. In order to see the effect of viscous damping, a small scale model test was performed in a 2D wave flume. The performances of five different damping plates were measured and discussed based on the results of free decay tests and regular wave tests.

Effect of local joint flexibility on the fatigue lfe assessment of jacket-type offshore platform

  • Behrouz Asgarian;Parviz Kuzehgar;Pooya Rezadoost
    • Ocean Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • This paper investigates the impact of local joint flexibility (LJF) on the fatigue life of jacket-type offshore platforms. Four sample platforms with varying geometric properties are modeled and analyzed using the Opensees software. The analysis considers the LJF of tubular joints through the equivalent element and flexible link approaches, and the results are compared to rigid modeling. Initially, modal analysis is conducted to examine the influence of LJF on the frequency content of the structure. Subsequently, fatigue analysis is performed to evaluate the fatigue life of the joints. The comparison of fatigue life reveals that incorporating LJF leads to reduced fatigue damage and a significant increase in the longevity of the joints in the studied platforms. Moreover, as the platform height increases, the effect of LJF on fatigue damage becomes more pronounced. In conclusion, considering LJF in fatigue analysis provides more accurate results compared to conventional methods. Therefore, it is essential to incorporate the effects of LJF in the analysis and design of offshore jacket platforms to ensure their structural integrity and longevity.

Issues in offshore platform research - Part 1: Semi-submersibles

  • Sharma, R.;Kim, Tae-Wan;Sha, O.P.;Misra, S.C.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.155-170
    • /
    • 2010
  • Availability of economic and efficient energy resources is crucial to a nation's development. Because of their low cost and advancement in drilling and exploration technologies, oil and gas based energy systems are the most widely used energy source throughout the world. The inexpensive oil and gas based energy systems are used for everything, i.e., from transportation of goods and people to the harvesting of crops for food. As the energy demand continues to rise, there is strong need for inexpensive energy solutions. An offshore platform is a large structure that is used to house workers and machinery needed to drill wells in the ocean bed, extract oil and/or natural gas, process the produced fluids, and ship or pipe them to shore. Depending on the circumstances, the offshore platform can be fixed (to the ocean floor) or can consist of an artificial island or can float. Semi-submersibles are used for various purposes in offshore and marine engineering, e.g. crane vessels, drilling vessels, tourist vessels, production platforms and accommodation facilities, etc. The challenges of deepwater drilling have further motivated the researchers to design optimum choices for semi-submersibles for a chosen operating depth. In our series of eight papers, we discuss the design and production aspects of all the types of offshore platforms. In the present part I, we present an introduction and critical analysis of semi-submersibles.

Effects of Initial Conditions on Transient Responses in Dynamic Simulation of FOWT (초기 조건이 부유식 풍력터빈 동역학 해석의 과도응답에 미치는 영향)

  • Song, Jin-Seop;Rim, Chae-Whan;Moon, Seok-Jun;Nam, Yong-Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.288-293
    • /
    • 2014
  • The IEC standard for onshore or offshore wind turbines requires additional dummy simulations (at least 5 s) for the transient responses due to initial conditions. An increase in the dummy time causes a considerable increase in the computational cost considering multiple design spirals with several thousand design load analysis cases. A time of 30 s is typically used in practical simulations for a wind turbine design with a fixed platform. However, 30 s may be insufficient for floating offshore wind turbines (FOWT) because the platforms have lower natural frequencies, and the transient responses will last much longer. In this paper, an initial condition application algorithm is implemented for WindHydro, and the appropriate dummy simulation time is investigated based on a series of dynamic simulations of a FOWT. As a result, it is found that more than 300 s is required for the platform to have stationary motion after the initial transient responses for the FOWT under the conditions considered.

Design of Mooring Lines of a Floating Offshore Wind Turbine in South Offshore Area of Jeju (제주 해양환경에 적합한 부유식 해상풍력발전기 계류선 설계)

  • Choung, Joonmo;Kim, Hyungjun;Jeon, Gi-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.300-310
    • /
    • 2014
  • This paper presents a mooring design procedure of a floating offshore wind turbine. The environment data of south offshore area of Jeju collected from Korea Hydrographic and Oceanographic Administration(KHOA) are used for hydrodynamic analyses as environmental conditions. We considered a semi-submersible type floating wind turbine based on Offshore Code Comparison Collaborative Continuation(OC4) DeepCWind platform and National Renewable Energy Laboratory(NREL) 5 MW class wind turbine. Catenary mooring with studless chain is chosen as the mooring system. Important design decisions such as how large the nomial sizes are, how long the mooring lines are, how far the anchor points are located, are demonstrated in detail. Considering ultimate limit state and fatigue limit state based on 100-year return period and 50-year design life, respectively, longterm predictions of breaking strength and fatigue are proposed.