• 제목/요약/키워드: Offshore Plant Operation

검색결과 59건 처리시간 0.021초

Electrical system design in FLNG offshore unit

  • Kim, Jong-Su;Kim, Deok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권10호
    • /
    • pp.1037-1043
    • /
    • 2015
  • In recent years, Floating Liquefied Natural Gas (FLNG) Unit have attracted considerable attention. Generally, liquefied natural gas (LNG) units are produced in onshore liquefaction terminals from gas supplied from onshore gas fields or large-scale offshore gas fields near the coast. However, the development of these gas fields has approached saturation. Large-scale offshore gas fields far from the coast, as well as undeveloped medium- and small-scale offshore gas fields, have recently attracted attention. Among several proposed concepts, the floating LNG plant in the form of the FLNG system was chosen for further evaluation and development, considering worldwide receiving infrastructure. The design of a 2.5 million tonne per annum FLNG unit has been completed with a capacity corresponding to that of modern onshore liquefaction plants. Various simulation tests were performed to evaluate the performance of the electrical power plant, focusing on the efficiency of the electrical system to secure the aspects of plant safety. This design study analyzes the electrical system for the FLNG unit to improve the safety of operation and maintenance in the field.

Analysis on Application of Flywheel Energy Storage System for offshore plants with Dynamic Positioning System

  • Jeong, Hyun-Woo;Kim, Yoon-Sik;Kim, Chul-Ho;Choi, Sung-Hwan;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권7호
    • /
    • pp.935-941
    • /
    • 2012
  • This paper describes a study of conventional electrical rig and simulated application of Flywheel Energy Storage system on the power system of the offshore plants with dynamic positioning system with the following aims: improve fuel consumption on engines, prevent blackout and mitigate voltage sags due to pulsed load and fault. Fuel consumption has been analyzed for the generators of the typical drilling rigs compared with the power plant with Flywheel Storage Unit which has an important aid in avoiding power interruption during DP (Dynamic Positioning) operation. The FES (Fly wheel Energy storage System) releases energy very quickly and efficiently to ensure continuity of the power supply to essential consumers such as auxiliary machinery and thrusters upon main power failure. It will run until the standby diesel generator can start and supply the electric power to the facilities to keep the vessel in correct position under DP operation. The proposed backup method to utilize the quick and large energy storage Flywheel system can be optimized in any power system design on offshore plant.

극지환경성능시험설비를 활용한 저온환경 시스템 구축 (Establishment of Low Temperature Environment System Using Polar Environment Performance Test Construction)

  • 성기영;한성종;이정희
    • 한국산업융합학회 논문집
    • /
    • 제25권5호
    • /
    • pp.843-851
    • /
    • 2022
  • This paper was conducted to study the conditions for the manufacture and operation of artificial snow removal and ice-making test facilities so that the test equipment can be tested in a low-temperature environment using the polar environment performance test facility. The polar environment performance test Facility is designed to artificially simulate extreme environments up to -65 ℃, and is a mid-to-large low-temperature environment test facility that can perform performance tests on offshore plant equipment, ships, leisure, and offshore structures. To verify the safety of deck work of ships operating in polar environments, artificial snow removal and artificial ice making devices were manufactured, and we conducted research on various operating environments using these facilities. For the efficient operation of artificial snow and ice making facilities, it is important to continuously supply dry air, and it has been found that installing an additional heater at the tip of the nozzle is effective in preventing freezing.

Prospects and Economics of Offshore Wind Turbine Systems

  • Pham, Thi Quynh Mai;Im, Sungwoo;Choung, Joonmo
    • 한국해양공학회지
    • /
    • 제35권5호
    • /
    • pp.382-392
    • /
    • 2021
  • In recent years, floating offshore wind turbines have attracted more attention as a new renewable energy resource while bottom-fixed offshore wind turbines reach their limit of water depth. Various projects have been proposed with the rapid increase in installed floating wind power capacity, but the economic aspect remains as a biggest issue. To figure out sensible approaches for saving costs, a comparison analysis of the levelized cost of electricity (LCOE) between floating and bottom-fixed offshore wind turbines was carried out. The LCOE was reviewed from a social perspective and a cost breakdown and a literature review analysis were used to itemize the costs into its various components in each level of power plant and system integration. The results show that the highest proportion in capital expenditure of a floating offshore wind turbine results in the substructure part, which is the main difference from a bottom-fixed wind turbine. A floating offshore wind turbine was found to have several advantages over a bottom-fixed wind turbine. Although a similarity in operation and maintenance cost structure is revealed, a floating wind turbine still has the benefit of being able to be maintained at a seaport. After emphasizing the cost-reduction advantages of a floating wind turbine, its LCOE outlook is provided to give a brief overview in the following years. Finally, some estimated cost drivers, such as economics of scale, wind turbine rating, a floater with mooring system, and grid connection cost, are outlined as proposals for floating wind LCOE reduction.

해양플랜트 프로세스 배관 Pressure Leak Test의 품질 특성에 관한 연구 (A Study on a Quality Characteristics of Pressure Leak Test of Process Piping for Offshore Plant)

  • 박창수;김형우
    • 한국산업융합학회 논문집
    • /
    • 제21권6호
    • /
    • pp.429-437
    • /
    • 2018
  • The process gas piping of the offshore plant can cause a massive explosion if the gas leakage occurs during operation. For the purpose of precaution of gas leakage accident, an air pressure test is performed on the process equipment tests using a test pump as much as the power to the piping inner side, mix 99% nitrogen gas and 1% helium gas. The purpose of the air pressure test is to check the work conformity process by handling and regulation for initial piping process, assembly, installation of module, welding, center alignment of the pipes assembling flange gasket in an unrestrained free state. In this paper, the regulation of the problematic air pressure test was analyzed and the solution criteria were established. And leakage tests of existing equipment were performed applying these solution methods. As a result, it was confirmed that there was no problem.

오일-가스 해양플랜트 설계 및 설치를 위한 해양탐사 (Marine Survey for Designing and Installing Offshore Oil-Gas Plant)

  • 김원식;우남섭;박종명;김현도;강동효;박인석;김영준;주용환;이호영
    • 지구물리와물리탐사
    • /
    • 제17권1호
    • /
    • pp.34-44
    • /
    • 2014
  • 해양 오일-가스 개발을 위한 플랜트 산업은 많은 장비들을 설계 및 배치하고 운영해야 하는 산업이며, 최근 동향을 보면 생산설비가 해저면(Subsea)쪽으로 증대되고 있다. 해양이라는 특성상 한번 설치되면 변경하기가 용이하지가 않으므로 기본 설계단계에서부터 적절한 시추정 개수, 위치 및 심도, 생산관 직경, 생산 시 관막힘 또는 손상 등의 생산 및 운영과 직접 관련된 정보뿐 아니라 해저에 설치되는 장비들의 안정성과 효과적인 생산운영을 위한 배치에 대한 고려가 필요하다. 이러한 정보들을 근본적으로 제공하기 위한 기법으로 해양탐사를 본 해설에서 다루고자 한다. 먼저 해양 오일-가스 개발을 위한 플랜트장비들을 요약하고, 오일-가스 해양플랜트 설계 및 설치 단계에서 해양탐사가 담당하는 역할을 요약하였다. 그리고 해외사례를 통하여 독자의 이해도를 높이고자 하였다. 해양 오일-가스 플랜트에 적용될 수 있는 해양탐사기법에 대한 이해와 향후 이 분야에 필요한 국내 해양탐사기술 개발에 도움이 되고자 한다.

시스템엔지니어링 기반 해양플랜트 Material handling 장비 수량산출 프로세스에 관한 연구 (A Study on the Estimation Process of Material handling Equipment for Offshore Plant Using System Engineering Approach)

  • 한성종;서영균;조맹익;김형우;박창수
    • 한국산업융합학회 논문집
    • /
    • 제22권6호
    • /
    • pp.785-795
    • /
    • 2019
  • This paper is a study on the modeling of the quantity estimation model for offshore plant Material handling equipment in FEED(Front End Engineering Design) verification stage using system engineering approach which is an engineering design methods. The relevant engineering execution procedure is not systemized although the operation method and Material handling equipment selection with weight and space constraints is a key part of the FEED. Using the system engineering process, the stakeholder requirements analysis process, the system requirements analysis, and the final system architecture design were sequentially performed, and the process developed through the functional development diagram and Requirement traceability matrix (RTM) was verified. In addition, based on the established process, we propose a Material handling quantity estimation model and Quantity calculation verification Table that can be applied at the FEED verification stage and we verify the applicability through case studies.

해양플랜트에 병렬 계류된 LNG 운반선의 거동에 슬로싱이 미치는 영향 (The Effects of Sloshing on the Responses of an LNG Carrier Moored in a Side-by-side Configuration with an Offshore Plant)

  • 이승재
    • 한국해양공학회지
    • /
    • 제24권5호
    • /
    • pp.16-21
    • /
    • 2010
  • During the loading/offloading operation of a liquefied natural gas carrier (LNGC) that is moored in a side-by-side configuration with an offshore plant, sloshing that occurs due to the partially filled LNG tank and the interactive effect between the two floating bodies are important factors that affect safety and operability. Therefore, a time-domain software program, called CHARM3D, was developed to consider the interactions between sloshing and the motion of a floating body, as well as the interactions between multiple bodies using the potential-viscous hybrid method. For the simulation of a floating body in the time domain, hydrodynamic coefficients and wave forces were calculated in the frequency domain using the 3D radiation/diffraction panel program based on potential theory. The calculated values were used for the simulation of a floating body in the time domain by convolution integrals. The liquid sloshing in the inner tanks is solved by the 3D-FDM Navier-Stokes solver that includes the consideration of free-surface non-linearity through the SURF scheme. The computed sloshing forces and moments were fed into the time integration of the ship's motion, and the updated motion was, in turn, used as the excitation force for liquid sloshing, which is repeated for the ensuing time steps. For comparison, a sloshing motion coupled analysis program based on linear potential theory in the frequency domain was developed. The computer programs that were developed were applied to the side-by-side offloading operation between the offshore plant and the LNGC. The frequency-domain results reproduced the coupling effects qualitatively, but, in general, the peaks were over-predicted compared to experimental and time-domain results. The interactive effects between the sloshing liquid and the motion of the vessel can be intensified further in the case of multiple floating bodies.

빅데이터 분석을 이용한 해양 구조물 배관 자재의 소요량 예측 (Estimation of Material Requirement of Piping Materials in an Offshore Structure using Big Data Analysis)

  • 오민재;노명일;박성우;김성훈
    • 대한조선학회논문집
    • /
    • 제55권3호
    • /
    • pp.243-251
    • /
    • 2018
  • In the shipyard, a lot of data is generated, stored, and managed during design, construction, and operation phases to build ships and offshore structures. However, it is difficult to handle such big data efficiently using existing data-handling technologies. As the big data technology is developed, the ship and offshore industries start to focus on the existing big data to find valuable information from it. In this paper, the material requirement estimation method of offshore structure piping materials using big data analysis is proposed. A big data platform for the data analysis in the shipyard is introduced and it is applied to the analysis of material requirement estimation to solve the problems in piping design by a designer. The regression model is developed from the big data of piping materials and verified using the existing data. This analysis can help a piping designer to estimate the exact amount of material requirement and schedule the purchase time.

해양플랜트 장비 성능 모니터링 시스템을 위한 데이터베이스 설계 (Database Development for Equipment Performance Monitoring System in an Offshore Plant)

  • 유승열;서주완;이재철;황세윤;황호진;이순섭
    • 해양환경안전학회지
    • /
    • 제26권5호
    • /
    • pp.474-482
    • /
    • 2020
  • 안전한 해양플랜트 운용을 위해 장비 성능평가를 실시하고 그 결과를 모니터링 할 수 있는 시스템이 필요하다. 현재는 육상으로부터 멀리 떨어진 해양플랜트의 특성상 장비 성능평가를 위해 정기적으로 계측 데이터를 저장매체에 저장한 후 육상으로 운반해야한다. 이로인해 성능평가 주기가 길어지고, 다음 성능평가가 시행되기 전까지의 장비의 성능 저하 정도를 알 수 없어 장비의 고장을 방지하기 어렵다. 따라서 육상이 아닌 해양플랜트 내에 온보드(on-board) 형태의 장비 성능 모니터링 시스템을 구축할 필요가 있다. 본 논문에서는 해양플랜트 내에서 장비 성능을 평가하고 그 결과를 가시화하는 장비 성능 모니터링 시스템을 개발하기 위한 초기 단계로, 장비 성능 모니터링 시스템의 데이터베이스를 설계 및 구축하고자 한다. 이를 위해 주요 장비의 태그 데이터를 선정하여 분석을 진행하였다. 최종적으로 장비 상태를 실시간으로 계측한 데이터를 해양플랜트 내에서 저장 및 관리하기 위해 온보드 형태의 장비 성능 모니터링 시스템을 위한 데이터베이스를 설계 및 구축 하였다.