• 제목/요약/키워드: Offshore Oil & Development

검색결과 74건 처리시간 0.026초

Offshore bridge crane의 설계 기초값 산출을 위한 전용시스템 개발 (Development of Exclusive System for Basic Design of Offshore Bridge Crane)

  • 박세명;이원규
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.85-91
    • /
    • 2012
  • Offshore Bridge Crane and Hoist which are used FPSO Ships that can move through self - power and have oil production, store and loading and unloading facilities are increasing demand. These equipments must use Crane safely by pitch and rolling of the high wave. For this, they have to be equipped with high durability and safety. So the advanced shipbuilding industries use a private design system which can be prompt in design and analyze in the first stage. For this study, It was developed a basic design system for "Bridge Crane and Hoist" used on FPSO ships. By developing this automated system for "Bridge Crane and Hoist" design, we will be able to make the design data easy to understand. This basic design system will help reduce the amount of working time it takes to design new systems, construct design databases and get approval for the finished design.

해상풍력발전기 모노파일 설계민감도해석 및 최적설계 (Design Sensitivity and Optimum Design of Monopile Support Structure in Offshore Wind Turbine)

  • 이지현;김수영
    • 대한조선학회논문집
    • /
    • 제51권1호
    • /
    • pp.78-87
    • /
    • 2014
  • Recently the offshore wind turbine development is requested to be installed off south-west coast and Jeju island in Korea. Reliable and robust support structures are required to meet the demand on the offshore wind turbine in harsh and rapidly varying environmental conditions. Monopile is the most preferred substructure in shallow water with long term experiences from the offshore gas and oil industries. This paper presents an optimum design of a monopile connection with grouted transition piece (TP) for the reliable and cost-effective design purposes. First, design loads are simulated for a 5 MW offshore wind turbine in site conditions off the southwest coast of Korea. Second, sensitivity analysis is performed to investigate the design sensitivity of geometry and material parameters of monopile connection based on the ultimate and fatigue capacities according to DNV standards. Next, optimization is conducted to minimize the total mass and resulted in 30% weight reduction and the optimum geometry and material properties of the monopile substructure of the fixed offshore wind turbine.

Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions

  • Sohn, Jung Min;Kim, Sang Jin;Seong, Dong Jin;Kim, Bong Ju;Ha, Yeon Chul;Seo, Jung Kwan;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.755-771
    • /
    • 2014
  • Environmental changes, especially global climate change, are creating new challenges to the development of the Arctic regions, which have substantial energy resources. And attention to offshore structures has increased with oil and gas development. The structural impact response of an explosion-resistant profiled blast walls normally changes when it operates in low temperatures. The main objectives of this study are to investigate the structural response of blast walls in low temperature and suggest useful guidelines for understanding the characteristics of the structural impact response of blast walls subjected to hydrocarbon explosions in Arctic conditions. The target temperatures were based on the average summer temperature ($-20^{\circ}C$), the average winter temperature ($-40^{\circ}C$) and the coldest temperature recorded (approximately $-68^{\circ}C$) in the Arctic. The nonlinear finite element analysis was performed to design an explosion-resistant profiled blast wall for use in Arctic conditions based on the behaviour of material properties at low temperatures established by performing a tensile test. The conclusions and implications of the findings are discussed.

In-line형 세퍼레이터의 기-액 다상유동 특성에 관한 연구 (A Study on the Gas-liquid Multiphase Flow Characteristics of the In-line Type Separator)

  • 한상목;김영주;우남섭;이왕도;조해진
    • 한국산업융합학회 논문집
    • /
    • 제26권5호
    • /
    • pp.803-812
    • /
    • 2023
  • The subsea separator of an offshore plant for offshore oil and gas development performs the process of separating oil and gas from crude oil produced in the subsea. The oil-gas subsea separator can be divided into a gravity type that separates fluids by gravity and an in-line type that separates fluids using centrifugal force of density. In the case of the deep sea, the development of a small in-line type separator is required due to manufacturing cost and safety problems caused by water pressure. Therefore, in this study, the gas-liquid phase separation efficiency of the subsea separator was identified through the study of the multiphase flow characteristics of the in-line type separator. For the optimal design of the in-line type separator, the shape of the internal swirl element(ISE) was selected first, and the separation efficiency results for each section of the in-line type separator were analyzed. This study was conducted in parallel with experiments and numerical analysis, and it is expected that the reliability and efficiency of the in-line type separator will be improved through the results.

유류확산모델 개발 및 동해의 유류오염 사고대책 (Development of Oil Spills Model and Contingency Planning ill East Sea)

  • 류청로;김홍진
    • 한국해양공학회지
    • /
    • 제19권4호
    • /
    • pp.35-41
    • /
    • 2005
  • There has been increasing offshore oil exploration, drilling, and production activities, as well as a huge amount of petroleum being transported by tankers and pipelines through the ocean and costal environment. Assessment must be made of the potential risk of damage resulting from the exploration, development and transportation activities. This is achieved through predictive impact evaluations of the fate of hypothetical or real oil spills. VVhen an oil spill occurs, planning and execution of cleanup measures also require the capability to forecast the short-term and long-term behavior of the spilled oil. A great amount of effort has been spent by government agencies, oil industries, and researchers over the past decade to develop more realistic models for oil spills. Numerous oil spill models have been developed and applied, most of which attempt to predict the oil spill fate and behavior. For an actual contingency planning, the oil fate and behavior model should be combined with an oil spill incident model, an environmental impact and risk model and a contingency planning model. The purpose of this review study is to give an overview of existing oil spill models that deal with the physical, chemical, biological, and socia-economical aspects of the incident, fate, and environmental impact of oil spills. After reviewing the existing models, future research needs are suggested. In the study, available oil spill models are separated into oil spill incident, oil spill fate and behavior, environmental impact and risk, and contingency planning models. The processes of the oil spill fate and behavior are reviewed in detail and the characteristics of existing oil spill fate and behavior models are examined and classified so that an ideal model may be identified. Finally, future research needs are discussed.

해양플랜트 상부구조설계 지원 소프트웨어 개발에 대한 연구 (A Study on the Development of Software Supporting the Superstructural Design of Offshore Plant)

  • 김현철;국성근
    • 한국산학기술학회논문지
    • /
    • 제21권11호
    • /
    • pp.19-27
    • /
    • 2020
  • 해양플랜트 탑사이드에는 원유, 가스 등의 에너지 자원을 처리하기 위한 다양한 종류의 해양 설비들과 이들 설비들을 연결하는 기자재 및 의장재들이 제한된 공간 내에 설치되어 있다. 그리고 해양플랜트 상부구조는 해양 설비 및 관련 장비들을 고정하고 지지하기 위한 수많은 받침선반 구조물과 보강재들로 구성된 구조물이다. 본 논문은 이들 상부구조설계를 효율적으로 지원하기 위한 설계 지원 소프트웨어 개발 내용을 기술하였다. 개발된 설계 지원 소프트웨어는 AVEVA Marine의 PML(Programmable macro language)을 기반으로 하며, 상부구조설계를 위한 파라메트릭 방법을 지원한다. 브라켓, 수직 보강재 등 해양플랜트 상부 구조의 보강재를 위한 파라메트릭 설계는 설계 오류를 줄이고 효율적인 작업을 가능하게 한다. 그리고 AutoLisp을 사용하여 기본 설계와 상세설계에서 작성된 받침선반 구조에 대한 2D도면으로부터 일괄 3D 모델링하는 방법을 개발하였다. 또한, 개발된 설계지원 소프트웨어를 해양플랜트 상부구조설계 3D 모델링에 적용할 할 경우 AVEVA PDMS의 기본 기능들만 사용한 경우 대비 약 90%이상 설계시수 단축을 기대할 수 있음을 상부구조 모듈설계 적용 예를 통해 확인하였다.

Review on Oil Spills and Their Effects

  • Lee, Hwa-Woon-;Nobuhisa-Kabayashi;Ryu, Cheong-Ro
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 1991년도 정기학술강연회 발표논문 초록집
    • /
    • pp.47-50
    • /
    • 1991
  • With increasing offshore oil exploration, drilling, and production activities, and with a huge amount of petroleum being transported by tankers and pipelines through the ocean and coastal environment and resoures has been realized among government decision makers, oil industry personnel, and the general public. Assessment must be made of the potential risk of damage resulting from the exploration, development and transportation activities, based on predictive impact evaluations of the fate of hypothetical or real oil spills.(omitted)

  • PDF

부유식 천연액화가스(LNG) 터미널의 설계 기술 개발

  • 한용섭;이정한;김용수
    • 가스산업과 기술
    • /
    • 제5권1호
    • /
    • pp.39-47
    • /
    • 2002
  • With the expansion of natural gas demands in many countries, the necessity of LNG receiving terminals has been increased. The offshore LNG Floating Storage and Regasification Unit (FSRU) attracts attentions not only for a land based LNG receiving terminal alternative, but also for a feasible and economic solution. Nowadays, as the reliability of offshore oil and gas floating facilities and LNG carriers gains with proven worldwide operations, the FSRU can achieve a safety level that can be comparable to an onshore terminal. The design development related with safety features of the FSRU has been extensively carried out by oil and gas companies, shipyards, engineering companies, and equipment vendors, and has been successful so far in many fields. The construction of the FSRU can be achieved by integrating various technologies and experiences from many disciplines and many participating companies and vendors. In this paper, reviews on some of the important design features and design improvements on FSRU together with the practical construction aspects in cargo containment, vaporization system, ESD system, and operation modes, have been covered in comparison with actual LNG carrier, onshore receiving terminal, and FPSO systems. In order to materialize an FSRU project, the technical and economic justification has to be preceded. It is believed that once the safety and technical soundness is convinced, the FSRU can bring a higher project feasibility by reducing the overall construction time and cost. Through this study, an FSRU design readily applicable to an actual project has been developed by incorporating experiences gained from many marine and offshore projects. The wide use of proven standard technologies adopted in the series construction of LNG carriers and offshore FPSOs will bring the project efficiency and reliability.

  • PDF

복합 외력환경 중 원형 단면 세장체의 탄성응답에 관한 실험적 연구 (Experimental Study on Elastic Response of Circular Cross-section Slender Body to Forced Oscillation, Waves, and Current)

  • 박지원;이승재;조효제;황재혁;한성훈
    • 한국해양공학회지
    • /
    • 제30권2호
    • /
    • pp.91-99
    • /
    • 2016
  • The global demand for oil and natural gas has increased, and resource development is moving to the deep sea. Floating and flexible offshore structures such as semi-submersible, spar, and FPSO structures have been widely used. The major equipment of floating structures is always exposed to waves, currents, and other marine environmental factors, which cause structural damage. Moreover, flexible risers are susceptible to an exciting force due to the motion of the floating body. The inline and transverse responses from the three-dimensional behavior of a floating structure occur because of various forces. Typical risers are made of steel pipe and applied in the oil and gas development field, but flexible materials such as polyethylene are suitable for OTEC risers. Consequently, the optimal design of a flexible offshore plant requires a dynamic behavior analysis of slender bodies made of the different materials commonly used for offshore flexible risers. In this study, a three-dimensional motion measurement device was used to analyze the displacements of riser models induced by external force factors, and forced oscillation of a riser was linked to forced oscillation under a steady flow and regular wave condition.

깨어진 해빙의 사항조건에서 빙 하중 추정법 연구 (Estimation Method for Ice load of Managed Ice in an Oblique Condition)

  • 김현수;이재빈
    • 한국해양공학회지
    • /
    • 제32권3호
    • /
    • pp.184-191
    • /
    • 2018
  • Recently, as sea ice in the Arctic has been decreasing due to global warming, it has become easier to develop oil and gas resources buried in the Arctic region. As a result, Russia, the United States, and other Arctic coastal states are increasingly interested in the development of oil and gas resources, and the demand for offshore structures to support Arctic sea resources development is expected to significantly increase. Since offshore structures operating in Arctic regions need to secure safety against various drifting ice conditions, the concept of an ice-strengthened design is introduced here, with a priority on calculation of ice load. Although research on the estimation of ice load has been carried out all over the world, most ice-load studies have been limited to estimating the ice load of the icebreaker in a non-oblique state. Meanwhile, in the case of Arctic offshore structures, although it is also necessary to estimate the ice load according to oblique angles, the overall research on this topic is insufficient. In this paper, we suggest algorithms for calculating the ice load of managed ice (pack ice, 100% concentration) in an oblique state, and discuss validity. The effect of oblique angle according to estimated ice load with various oblique angles was also analyzed, along with the impact of ship speed and ice thickness on ice load.