• Title/Summary/Keyword: Offshore Disposal of Dredged Sediment

Search Result 4, Processing Time 0.018 seconds

Diagnosis for Status of Dredging and Ocean Disposal of Coastal Sediment in Korea (우리나라 연안준설 및 준설토 해양투기 현황 진단)

  • Eom, Ki-Hyuk;Lee, Dae-In;Park, Dal-Soo;Kim, Gui-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.3
    • /
    • pp.185-193
    • /
    • 2009
  • This study documented and diagnosed the status and problems of coastal dredging and offshore disposal of dredged sediments in South Korea to improve assessment procedures for marine environmental impacts and develop effective management systems. A total of $729({\times}10^6)m^3$ of coastal sediment was dredged in the harbors during the period of 2001-2008. Most of dredged sediment was disposed to the land dumping sites whereas ocean disposal accounted for less than 5%. Ocean disposal areas were especially concentrated to the exclusive economic zone (EEZ) in the southeast of Busan, which is not only an important fishing area for fishermen, but also considered to be spawning and nursery ground for some commercial fish species. To minimize negative impacts of dredging and ocean disposal of coastal sediment on marine ecosystem and potential strife among coastal users, we suggest 1) in development projects involving ocean disposal, it should be mandatory to propose careful reuse plans in the land, and 2) guidelines of environmental assessment and consequence management programs should be developed and implemented.

Improvement of the Marine Environmental Assessment for Dredging and Ocean Disposal of Coastal Sediment in Korea (연안준설 및 준설토 해양투기 해양환경평가 개선방안)

  • Lee, Dae-In;Park, Dal-Soo;Eom, Ki-Hyuk;Kim, Gui-Young;Cho, Hyeon-Seo;Kim, Jong-Kyu;Seo, Young-Kyo;Baeck, Gun-Wook
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.3
    • /
    • pp.131-141
    • /
    • 2009
  • We studied improvement in marine environmental impact assessment and related management systems of coastal sediments that are dredged inshore but disposed offshore. After reviewing and diagnosing the existing assessment procedures and problems, we recommend to design the core assessment items and improve the reliability of assessment byenhancing the quality assurance/quality control (QA/QC) and verification processes. We proposed eco-friendly disposal plan for dredging sediment such as reuse system in land development was explored. A marine environmental database system was established to support the assessment processes. Guidelines for marine research and modelling were proposed for improving assessment of dredging and disposal of coastal sediment. Also, applying of screening and scoping for marine environmental assessment was reviewed.

A Study on Environmental Impact Assessment Guidelines for Marine Environmentsin Construction Projects of Offshore Waste Disposal Landfills (해상최종처리장 건설사업의 해양환경 환경영향평가 가이드라인 개발 연구)

  • Lee, Haemi;Son, Minho;Kang, Taesoon;Maeng, Junho
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.312-331
    • /
    • 2019
  • An offshore waste disposal facility refers to a landfill site for final landfilling of stabilized inorganic solid waste such as land and marine waste incineration materials, and the aim of such a facility is to solve the problem of insufficient waste disposal space on land and create and develop environmentally friendly marine spaces. The purpose of this study is to prepare guidelines for the construction of offshore waste disposal facilities, which reflect the need and importance of paying sufficient heed to environmental considerations from the initial stage of the project, in order to investigate, predict, and assess how such guidelines will affect the marine environment in relation to the construction of offshore waste disposal facilities, with the goal of minimizing the impact on and damage to the environment. For the purpose of this research, guidelines focusing on the construction of offshore waste disposal facilities were derived through an analysis of domestic cases and similar foreign cases and an assessment of their level of compliance with existing EIA guidelines through the operation of a discussion forum. In order to review the EIA report on similar cases in Korea, 17 EIA documents (2005~2016) for dredged soil dumping areas and ash ponds of thermal power plants were analyzed to investigate the status of marine organisms, marine physics, marine water quality, and marine sediment and to understand what types of problems can occur and what improvement measures can be taken. The purpose of these guidelines were to minimize damage to the marine environment by promoting EIA protocols in accordance with scientific and systematic procedures, to reduce the consultation period related to projects, to resolve social conflicts, and to reduce economic costs.

Significance of Biomarkers in the Assessment of Dredged Materials for Beneficial Reuses and Disposal (준설물질 유효활용 및 처분을 위한 평가에 있어 생체지표 활용의 재고)

  • Won, Eun-Ji;Choi, Jin Young;Kim, Kyoungrean
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.466-476
    • /
    • 2016
  • Dredging is inevitably necessary for the management of water infrastructure such as waterways and polluted bottom sediment. Dredged material management options may be offshore dumping, wetland creation, beach nourishment and various other engineering uses depending on the given circumstances at the time of dredging. Among those options, wetland creation and beach nourishment are the preferred ones in Korea considering significant loss of wetland and beach erosion due to various development projects along the coastal region. In order to use dredged material beneficially, however, dredged material needs to be assessed its suitability with respect to its engineering purpose and environmental criteria. In this paper, we demonstrate that environmental risk of dredged material to be introduced into the marine environment can be easily assessed using biomarkers with relative low cost. Biomarkers can also compliment pollutant contents analysis that may not be specific to their impact on biological response. Biomarker information may be used to assist decision making process in selecting suitable treatment or beneficial use options for dredged materials.