• Title/Summary/Keyword: Offshore Current

Search Result 441, Processing Time 0.027 seconds

Diagnosis of Scoping and Type of Review on the Marine Environmental Impact Assessment for Ocean Energy Development Project (해양에너지개발사업 환경영향평가 검토유형 및 중점평가사항 진단)

  • Lee, Dae In;Kim, Gui Young;Tac, Dae Ho;Yi, Yong Min;Choi, Jin Hyu;Kim, Hye Jin;Lee, Ji Hye;Yoon, Sung Soon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.179-188
    • /
    • 2015
  • This study reviewed the type of the project and developmental plan related to ocean energy development in the coastal land boundaries and the ocean, and suggested the efficient scoping method through the diagnosis of the key items of environmental impact assessment (EIA) in the coastal area. The major projects are the construction of tidal power plant, tidal current power plant, and offshore wind power plant in the public water, and also those are the construction of solar power plants in the coastal land boundaries. While the project plans on a large scale such as the construction of tidal power plant, it is important to consider both property of usefulness of the designated areas and harmony analysis with marine space availability based on the adequacy of the site selection and relevance of plan with the master plan for reclamation and strategic environmental assessment (SEA). And also it needs to be considered the careful checkup on the EIA checklist referring to the type of project, effective post-monitoring, and suggestion of mitigating methods to minimize the environmental impacts during the stage of actual environmental impact assessment. Introduction of a system of integrated marine environmental impact assessment should be considered for reasonable and effective manage to developmental projects on the marine spatial area.

A Study on the Selection of Target Ship for the Protection of Submarine Power Cable (해저 동력케이블 보호를 위한 대상 선박 선정에 관한 연구)

  • Lee, Yun-sok;Kim, Seungyeon;Yu, Yungung;Yun, Gwi-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.662-669
    • /
    • 2018
  • Recently, the installation of submarine power cables is under consideration due to the increase of electric power usage and the development of the offshore wind farm in island areas, including Jeju. In order to protect power cables installed on the seabed, it is necessary to calculate the burial depth based on the characteristics of anchoring, dragging and fishing, etc. However, there is no design standard related to the size of target ships to protect the cables in Korea. In this study, we analyzed the design standards for the protection of domestic submarine pipelines similar to submarine cables, and developed the risk matrix based on the classification by emergency anchoring considering the installation environment, then designed the size of target ships according to the cumulative function scale by ship size sailing through the sea concerned. Also, we linked marine accident conditions, such as anchoring, dragging, etc. and the environmental conditions such as current, sea-area depth of installation etc. to the criteria of the protection of submarine cable, and examined the size of specific target ships by dividing the operating environment of ships into harbor, coastal and short sea. To confirm the adequacy and availability of the size of target ships, we verified this result by applying to No. 3 submarine power cables, which is to be installed in the section from Wando to Jeju Island. This result is expected to influence in the development of a protection system for submarine cables and pipelines as well as the selection of anchor weight according to the determination of burial depth.

Phytohydrography and the Vertical Pattern of Nitracline in the Southern Waters of the Korean East Sea in Early Spring (춘계 한국 동해 남부해역에서의 식물 수문학적 수역과 질산염약층의 수직양상)

  • Shim, Jae Hyung;Yang, Sung Ryull;Lee, Won Ho
    • 한국해양학회지
    • /
    • v.24 no.1
    • /
    • pp.15-28
    • /
    • 1989
  • A study on quantitative phytoplankton samples, hydrographic conditions (temperature, salinity, dissolved oxygen), and nutrients has been performed in the southern waters of the Korean East Sea in early spring. Phytoplankton community showed close correlation with hydrographic conditions. This study area could be divided into three phytohydrographic regions; 1) East Korean Warm Water Region (a branch of Tsushima Current), 2) North Korean Cold Water Region, and 3) offshore water region not affected by other two water regions. Vertical distribution of phytoplankton is dependent upon stability of water column and nutrient concentration. Nutrient concentration shows characteristic distribution according to water masses. N/P ratio of ca. 3 in surface layer indicates that nitrogen is the major limiting nutrient in this area. N/P removal ratio was 12.54 ($r^2$ = 0.96), consistent with the Redified ratio. Primary nitrite maxima at the nitracline depths are thought to be formed by phytoplankton exudation. Secondary nitrite maximum was observed in coastal area with dissolved oxygen content of >5.2 ml/l much higher than <0.25 ml/l in other areas. The mechanism of secondary maximum is different from that of other regions, and whether it may be due to in situ degradation of organic matter by bacterial activity is still open to discuss.

  • PDF

On the Design of Lifting Lugs Based on the Ultimate Strength (최종강도에 기초한 리프팅 러그의 설계)

  • Lee, Joo-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Lifting lugs are frequently used to transport and to turn over blocks of ship and offshore structures in a shipyard. As the shipbuilding technology has been developed, blocks has become bigger and bigger, and block management technology takes a more important role in shipbuilding to enhance the productivity. For the sake of economy as well as safety in design of lug structure, needed is a more rational design procedure based on the ultimate strength derived through the rigorous non-linear structural analysis considering both the material and geometric non-linearity. This study is aimed at deriving the optimum design of T type lug structure which is frequently used in a shipyard. The optimum thickness of lug's main body is to be determined based on the results of non-linear strength analysis. As far as the present results for T type lugs having various capacity are concerned, it can be said that the present optimum design result can guarantee both safety and economy. From the fact that any regular trend cannot be found in weight reduction to the capacity of lugs, it seems to be necessary to review the current design procedure of lug structure. The present design procedure can be extensively used in design of various types of lug structures used in shipyard.

Effect of Grid, Turbulence Modeling and Discretization on the Solution of CFD (격자, 난류모형 및 이산화 방법이 유동해석 결과에 미치는 영향)

  • Park, Dong-Woo;Yoon, Hyun-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.419-425
    • /
    • 2014
  • The current work investigated the variation of numerical solutions according to the grid number, the distance of the first grid point off the ship surface, turbulence modeling and discretization. The subject vessel is KVLCC. A commercial code, Gridgen V15 and FLUENT were used the generation of the ship hull surface and spatial system and flow computation. The first part of examination, the effect of solutions were accessed depending on the grid number, turbulence modeling and discretization. The second part was focus on the suitable selection of the distance of the first grid point off the ship surface: $Y_P+$. When grid number and discretization were fixed the same value, the friction resistance showed differences within 1 % but the pressure resistance showed big differences 9 % depending on the turbulence modeling. When $Y_P+$ were set 30 and 50 for the same discretization, friction resistance showed almost same results within 1 % according to the turbulence modeling. However, when $Y_P+$ were fixed 100, friction resistance showed more differences of 3 % compared to $Y_P+$ of 30 and 50. Whereas pressure resistance showed big differences of 10 % regardless of turbulence modeling. When turbulence modeling and discretization were set the same value, friction, pressure and total resistance showed almost same result within 0.3 % depending on the grid number. Lastly, When turbulence modeling and discretization were fixed the same value, the friction resistance showed differences within 5~8 % but the pressure resistance showed small differences depending on the $Y_P+$.

Evaluation of the Behavior of Dredged Materials in Ocean Dumping Area (해양투기장에서 준설토의 투기에 따른 거동 평가)

  • Lee, Joong-Woo;Oh, Dong-Hoon;Lee, Seung-Chul;Kim, Hyung-Chul;Kim, Kang-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.433-438
    • /
    • 2006
  • When we consider to develop a new harbor, the most important factor, we think, is the lowest water depth of waterway and approaching channel for safe navigation of vesse. The existing harbors have been being dredged to meet the international trend of jumbo sized vessels by adopting the new design criteria. As the dredged materials over the expected at the design level were common and there are still lack of land based reclamation area, we have no choice to discharge the dredged materials in open sea area. In this study, we analysed the behavior of discharged materials at the dumping area of offshore open sea, which were collected from the dredging work at the waterway in Busan New Port. We measured the tidal currents and analyzed the waters of dumping site after the dumping work. these were used to evaluate the numerical models. Suspended Solids(SS) were introduced to the diffusion model. Because of the characteristics of the dumping site, the speed of initial diffusion and settle down of the discharged materials was so fast. Therefore, we believe that the dumped materials do not cause a significant impact to the marine environment.

  • PDF

Spatial distribution of hydrocarbon reservoirs in the West Korea Bay Basin in the northern part of the Yellow Sea, estimated by 3D gravity forward modeling (3차원 중력 모델링에 의해 예측된 황해 북부 서한만 분지 석유 저류층의 공간적 분포)

  • Choi, Sungchan;Ryu, In-Chang
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.641-656
    • /
    • 2018
  • Although an amount of hydrocarbon has been discovered in the West Korea Bay Basin (WKBB), located in the North Korean offshore area, geophysical investigations associated with these hydrocarbon reservoirs are not permitted because of the current geopolitical situation. Interpretation of satellite derived potential field data can be alternatively used to image three-dimensional (3D) density distribution in the sedimentary basin associated with hydrocarbon deposits. We interpreted the TRIDENT satellite-derived gravity field data to provide detailed insights into the spatial distribution of sedimentary density structures in the WKBB. We used 3D forward density modeling for the interpretation that incorporated constraints from existing geological and geophysical information. The gravity data interpretation and 3D forward modeling showed that there are two modeled areas in the central subbasin that are characterized by very low density structures, with a maximum density of about $2,000kg/m^3$, indicating some type of hydrocarbon reservoir. One of the anticipated hydrocarbon reservoirs is located in the southern part of the central subbasin with a volume of about $250km^3$ at a depth of about 3,000 m in the Cretaceous/Jurassic layer. The other hydrocarbon reservoir should exist in the northern part of the central subbasin, with an average volume of about $300km^3$ at a depth of about 2,500 m. A comparison between the TRIDENT derived gravity field and the ship-based gravity field measured in 1980s shows us that our results are highly reliable and there is a very high probability to detect another low-density layer existings in the northwestern part of the central subbasin.

Variation Characteristics of Wave Field around Three-Dimensional Low-Crested Structure (3차원저천단구조물(LCS) 주변에서 파동장의 변동특성)

  • Lee, Jun Hyeong;Bae, Ju Hyun;An, Sung Wook;Lee, Kwang Ho;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.180-198
    • /
    • 2019
  • In recent years, countries like Europe and Japan have been involved in many researches on the Low-Crested Structure (LCS) which is the method to protect beach erosion and it is regarded as an alternative to the submerged breakwaters, and compiled its results and released the design manual. In the past, studies on LCS have focused on two-dimensional wave transmission and calculating required weight of armor units, and these were mainly examined and discussed based on experiments. In this study, three-dimensional numerical analysis is performed on permeable LCS. The open-source CFD code olaFlow based on the Navier-Stokes momentum equations is applied to the numerical analysis, which is a strongly nonlinear analysis method that enables breaking and turbulence analysis. As a result, the distribution characteristics of the LCS such as water level, water flow, and turbulent kinetic energy were examined and discussed, then they were carefully compared and examined in the case of submerged breakwaters. The study results indicate that there is a difference between the flow patterns of longshore current near the shoreline, the spatial distribution of longshore and on-offshore directions of mean turbulent kinetic energy in case of submerged breakwaters and LCS. It is predicted that the difference in these results leads to the difference in sand movement.

The efficient DC-link voltage design of the Type 4 wind turbine that satisfies HVRT function requirements (HVRT 기능 요구조건을 만족하는 Type 4 풍력 발전기의 효율적인 직류단 전압 설계)

  • Baek, Seung-Hyuk;Kim, Sungmin
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.399-407
    • /
    • 2021
  • This paper proposes the DC-link voltage design method of Type 4 wind turbine that minimizes power loss and satisfies the High Voltage Ride Through(HVRT) function requirements of the transmission system operator. The Type 4 wind turbine used for large-capacity offshore wind turbine consists of the Back-to-Back converter in which the converter linked to the power grid and the inverter linked to the wind turbine share the DC-link. When the grid high voltage fault occurs in the Type 4 wind turbine, if the DC-link voltage is insufficient compared to the fault voltage level, the current controller of the grid-side converter can't operate smoothly due to over modulation. Therefore, to satisfy the HVRT function, the DC-link voltage should be designed based on the voltage level of high voltage fault. However, steady-state switching losses increase further as the DC-link voltage increases. Therefore, the considerations should be included for the loss to be increased when the DC-link voltage is designed significantly. In this paper, the design method for the DC-link voltage considered the fault voltage level and the loss is explained, and the validity of the proposed design method is verified through the HVRT function simulation based on the PSCAD model of the 2MVA Type 4 wind turbine.

Risk Assessment of the Accident Place Types Considering the Coastal Activity Time (연안활동시간을 고려한 장소유형별 위험도 평가)

  • Seo, Heui Jung;Park, Seon Jung;Park, Seol Hwa;Park, Seung Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.5
    • /
    • pp.144-155
    • /
    • 2022
  • The Korea Coast Guard evaluates the risk of major coastal activity places to prevent coastal accidents, and patrols and manages them based on that, but it is not responding properly to the continuously increasing number of coastal accidents. The reason for this is that, despite the gradual expansion of coastal activity places, there is a lack of manpower to manage and supervise them, resulting in blind spots in coastal accident safety management. Therefore, in order to solve this problem, it is necessary to prepare more efficient and effective measures that check and supplement the current coastal safety management system. Coastal accidents show different characteristics of accident causes and places due to differences in the activity characteristics of users according to time. As a result of analyzing coastal accident data (2017~2021), the frequency of daytime accidents is high in the case of sea rock, beach, and offshore, where family leisure activities are frequent. In the case of wharf, tidal flat and bridge, where accidents due to drinking, disorientation, and suicide mainly occur, the frequency of accidents at night is high. In addition, there were more accidents on weekends when the number of users increased compared to weekdays. This trend indicates that the user's temporal activity characteristics must be reflected in the risk assessment of coastal activity places. Therefore, in this study, based on the case of coastal accidents, the characteristics of accidents at coastal activity places according to time were identified, and the criteria were presented for risk evaluation by grading them. It is expected that it will be possible to lay the foundation for reducing coastal accidents by efficiently managing and supervising coastal activity places over time using the presented evaluation criteria.