• 제목/요약/키워드: Offset and Oblique Impacts

검색결과 2건 처리시간 0.017초

저속 추돌시 충돌방향에 따른 목상해 해석 (A Study on Influence of the Impact Direction on the Neck Injury during Low Speed Rear Impacts)

  • 조휘창;김영은
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.135-142
    • /
    • 2007
  • MADYMO human model with the detail neck was used to investigate the reaction force of neck and neck injury from rear impact directions. In the validation simulation, head acceleration, thorax acceleration and the global kinematics of the head and neck were correlated well with experimental data. Acceleration data from three 15 km/h low speed car rear impact pendulum tests(rear-end, offset, oblique) were used to simulate the model. In the simulation results, the reaction force on the facet joint and discs in the oblique rear impact were higher than rear-end, offset rear impacts. Further research is still needed in order to neck injury analysis about different crash parameters.

목상해 분석을 위한 상세 유한요소 목모델 개발 - 저속후방 오프셋 충돌에 따른 분석 - (Development of a Finite Element Human Neck Model for Neck Injury Analysis - Application to Low Speed Rear-End Offset Impacts -)

  • 김영은;조휘창
    • 대한기계학회논문집A
    • /
    • 제29권6호
    • /
    • pp.913-920
    • /
    • 2005
  • Compared to previous in-vitro test, FE model showed reliable motion patterns. A finite element model of a 50th percentile male neck was developed to study the mechanics of whiplash injury while the rear impacts. The model was consisted of the whole cervical vertebrae including part of occipital, intervertebral discs. which were modeled using linear viscoelastic materials and posterior elements. The sliding interfaces were defined to simulate contact phenomena in facet joints and in odontoid process. All ligaments and atlanto-occipital membrane were modeled as nonlinear bar elements. Only muscle elements were not considered. Motion of each cervical vertebra was obtained from the dynamic simulation with a MADYMO model for 15 km/h $40\%$ rear end offset impacts. Soft tissue neck injury(STNI) was investigated with a developed FE model. In FE model analysis, the high stress was appeared at C3/C4 disc in offset impact. Further research is still needed in order to improve the developed neck FE model for many different crash patterns.