• Title/Summary/Keyword: Off-target

Search Result 436, Processing Time 0.024 seconds

RNA Interference in Infectious Tropical Diseases

  • Kang, Seok-Young;Hong, Young-S.
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • Introduction of double-stranded RNA (dsRNA) into some cells or organisms results in degradation of its homologous mRNA, a process called RNA interference (RNAi). The dsRNAs are processed into short interfering RNAs (siRNAs) that subsequently bind to the RNA-induced silencing complex (RISC), causing degradation of target mRNAs. Because of this sequence-specific ability to silence target genes, RNAi has been extensively used to study gene functions and has the potential to control disease pathogens or vectors. With this promise of RNAi to control pathogens and vectors, this paper reviews the current status of RNAi in protozoans, animal parasitic helminths and disease-transmitting vectors, such as insects. Many pathogens and vectors cause severe parasitic diseases in tropical regions and it is difficult to control once the host has been invaded. Intracellularly, RNAi can be highly effective in impeding parasitic development and proliferation within the host. To fully realize its potential as a means to control tropical diseases, appropriate delivery methods for RNAi should be developed, and possible off-target effects should be minimized for specific gene suppression. RNAi can also be utilized to reduce vector competence to interfere with disease transmission, as genes critical for pathogenesis of tropical diseases are knockdowned via RNAi.

Target Strength According to Tilt Angle and Length of Black Seabream Acanthopagrus schlegeli at 200 kHz-frequency (감성돔(Acanthopagrus schlegeli)의 유영자세각과 체장에 따른 200 kHz대역 음향산란강도)

  • Choi, Jung-Hwa;Oh, Woo-Seok;Yoon, Euna;Im, Yang-Jae;Lee, Kyounghoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.5
    • /
    • pp.566-570
    • /
    • 2018
  • This study determined the acoustic target strength (TS; dB) of black seabream Acanthopagrus schlegeli off the southern coast of Korea. For the ex-situ measurements, 200 kHz split beam transducers were used, and a Kirchhoff-ray mode (KRM) model acoustic model was used for the calculation. The fork length and total weight of the black seabream ranged from 6.4 to 30.8 cm and 6.4 to 683.8 g. respectively 200 kHz, the TS could beexpressed as a function of fork length as: $TS_{max}=20log_{10}(FL)-60.35(R=0.92)$ and $TS_{avg.}=20log_{10}(FL)-66.89(R=0.88)$. These TS results for black seabream can be used for estimating the biomass of fish in acoustic surveys in coastal areas.

Demonstration of Optimizing the CFAR Threshold for Development of GMTI System (GMTI 시스템 개발을 위한 CFAR 임계치 최적화)

  • Kim, So-Yeon;Yoon, Sang-Ho;Shin, Hyun-Ik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.141-146
    • /
    • 2018
  • The Ground Moving Target Indication(GMTI) technique can detect the moving targets on land using its Doppler returns. Also, the GMTI system can work in night regardless of the weather condition because it is an active sensor that uses the electromagnetic waves as its source. In order to develop the GMTI system, Constant False Alarm Rate(CFAR) threshold optimization is important because the main performances like detection probability, false alarm rate and Minimum Detectable Velocity(MDV) are related deeply with CFAR threshold. These key variables are used to calculate CFAR threshold and then trade-off between the variables is performed. In this paper, CFAR threshold optimization procedures are introduced, and the optimization results are demonstrated.

Mean Field Game based Reinforcement Learning for Weapon-Target Assignment (평균 필드 게임 기반의 강화학습을 통한 무기-표적 할당)

  • Shin, Min Kyu;Park, Soon-Seo;Lee, Daniel;Choi, Han-Lim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.337-345
    • /
    • 2020
  • The Weapon-Target Assignment(WTA) problem can be formulated as an optimization problem that minimize the threat of targets. Existing methods consider the trade-off between optimality and execution time to meet the various mission objectives. We propose a multi-agent reinforcement learning algorithm for WTA based on mean field game to solve the problem in real-time with nearly optimal accuracy. Mean field game is a recent method introduced to relieve the curse of dimensionality in multi-agent learning algorithm. In addition, previous reinforcement learning models for WTA generally do not consider weapon interference, which may be critical in real world operations. Therefore, we modify the reward function to discourage the crossing of weapon trajectories. The feasibility of the proposed method was verified through simulation of a WTA problem with multiple targets in realtime and the proposed algorithm can assign the weapons to all targets without crossing trajectories of weapons.

A Study on the Tracking Algorithm for BSD Detection of Smart Vehicles (스마트 자동차의 BSD 검지를 위한 추적알고리즘에 관한 연구)

  • Kim Wantae
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.2
    • /
    • pp.47-55
    • /
    • 2023
  • Recently, Sensor technologies are emerging to prevent traffic accidents and support safe driving in complex environments where human perception may be limited. The UWS is a technology that uses an ultrasonic sensor to detect objects at short distances. While it has the advantage of being simple to use, it also has the disadvantage of having a limited detection distance. The LDWS, on the other hand, is a technology that uses front image processing to detect lane departure and ensure the safety of the driving path. However, it may not be sufficient for determining the driving environment around the vehicle. To overcome these limitations, a system that utilizes FMCW radar is being used. The BSD radar system using FMCW continuously emits signals while driving, and the emitted signals bounce off nearby objects and return to the radar. The key technologies involved in designing the BSD radar system are tracking algorithms for detecting the surrounding situation of the vehicle. This paper presents a tracking algorithm for designing a BSD radar system, while explaining the principles of FMCW radar technology and signal types. Additionally, this paper presents the target tracking procedure and target filter to design an accurate tracking system and performance is verified through simulation.

Stabilization of elevation for gunner primary sight using variable structure control (가변구조제어에 의한 조준경 고각 안정화)

  • 김중완;이정규;김주상;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.643-647
    • /
    • 1990
  • Gunner primary sight(GPS) stabilization system lays line of sight(LOS) to find out a target and transmits informations to the fire control system (FCS). In a moving vehicle, accuracy of LOS and FCS depends on the design of GPS and servomechanism system. The heavy vibration of vehicle on the severe off-road environment degenerates the stabilization capability of GPS. In this study, to stabilize of elevation for GPS using the variable structure control, we derived the dynamic equation of GPS system and designed the variable structure controller. Computer simulation results fulfilled the static and dynamic stability of GPS using the variable structure control.

  • PDF

A Reverberation Cancellation Method Using the Escalator Algorithm in Active Sonar (능동 소오나에서 에스컬레이터 알고리즘을 이용한 잔향음 제거 기법)

  • 박경주;김수언;유경렬;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.17-25
    • /
    • 2001
  • Traditional adaptive noise cancelling methods rely their performance on various interfering parameters, such as convergence speed, tracking ability, numerical stability, relative frequency characteristics between target and reverberation signals, and activity of the target. In this paper, an adaptive noise cancelling method is suggested, which Provides a successful tradeoff mon these factors. It is designed to work on the transform domain, adopts the Gram-Schmidt orthogonalization process, and is implemented by the escalator algorithm. The transform domain approach supports a tradeoff between the convergence speed and numerical cost. The proposed method is verified by applying a real-data collected in the shallow waters off the east coasts of korea. It is shown that it has a good reverberation-rejection capability even for the target signal with adjacent frequency components to those of the reverberation, and its performance is invariant for the activity of the target.

  • PDF

Effect of Titanium Addition on Indium Zinc Oxide Thin Film Transistors by RF-magnetron Sputtering (RF-magnetron sputtering을 이용한 TiIZO 기반의 산화물 반도체에 대한 연구)

  • Woo, Sanghyun;Lim, Yooseong;Yi, Moonsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.115-121
    • /
    • 2013
  • We fabricated thin film transistors (TFTs) using TiInZnO(TiIZO) thin films as active channel layer. The thin films of TiIZO were deposited at room temperature by RF-magnetron co-sputtering system from InZnO(IZO) and Ti targets. We examined the effects of titanium addition by X-ray diffraction, X-ray photoelectron spectroscopy and the electrical characteristics of the TFTs. The TiIZO TFTs were investigated according to the radio-frequency power applied to the Ti target. We found that the transistor on-off currents were greatly influenced by the composition of titanium addition, which suppressed the formation of oxygen vacancies, because of the stronger oxidation tendency of Ti relative to that of Zn or In. A optimized TiIZO TFT with rf power 40W of Ti target showed good performance with an on/off current ratio greater than $10^5$, a field-effect mobility of 2.09 [$cm^2/V{\cdot}s$], a threshold voltage of 2.2 [V] and a subthreshold swing of 0.492 [V/dec.].

Line-of-Sight Rate for Off-axis Seeker on a 2-axis Gimbal (2축 김발 위에 장착된 비축탐색기를 위한 시선각속도 계산)

  • Kim, Jeong-Hun;Park, Kuk-Kwon;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.187-194
    • /
    • 2019
  • The off-axis Infra-Red(IR) seeker is mounted on the nose cone side of the anti-air high speed missile to alleviate thermal shield effect due to aerodynamic heating. The seeker output can not be regarded as the Line-of-Sight(LOS) rate any more as missile's roll motion to keep the target tracking is associated. In this paper, we propose a method to calculate the LOS rate for off-axis seeker on a 2-axis gimbal. Firstly, true LOS rate equations are analytically derived but not implementable because boresight error rate is not measurable. And then the first order lag approximation to obtain boresight error rate is proposed. The proposed LOS rate calculation method can compensate the coupling effect by considering the rotations of missile and gimbal. The performance of the proposed method is verified via full nonlinear 6-DOF(Degree of Freedom) simulations.

Improved Differential Wavefront Sampling algorithm for efficient alignment of Space optical system

  • Kim, Yun-Jong;Yang, Ho-Soon;Lee, Yun-Woo;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.34.4-35
    • /
    • 2008
  • The significant I&T process gain represented by reduction in overall budget expenditure can be obtained from the use of efficient alignment technique for large space optical systems. Such process gain tends to increase rapidly with an increase in aperture and/or in number of optical elements within the system. However, in practice, the alignment of multiple optical components tends to be rather difficult task because of the multiple coupling effects among the elements within the target system. In order to understand and hence identify the complex interplay of the wavefront coupling effects from the alignment process, the original differential wavefront sampling(DWS) method was presented elsewhere in recent years. DWS uses partial differential of the wavefront of optical component and perturbation value of the optical component against a particular alignment factor. The straightforward application of DWS for an off-axis optical system revealed that it tends to give incorrect estimation of the given misalignment state. In this study, we added off-axis correction terms to the original DWS algorithm and investigated its alignment performance. The performance simulation result for a Korsch type space optical system shows that the modified DWS is capable of bringing the misaligned system into the target alignment tolerance only after 3 iterations. It also shows that this new improved algorithm can be used to estimate the source misalignment as well. We are planning to apply this method for the alignment of a 800mm Korsch type telescope in the near future. We discuss the computational technique, simulation results and implications in details.

  • PDF